Peptide bond and Ramachandran plot

A peptide is a compound consisting of two or more amino acids. When two amino acid molecules are linked through a peptide bond, the product is called a dipeptide.

- Peptides and polypeptides are mostly linear and unbranched polymer composed of amino acids linked together by peptide bonds.
- Peptide bonds are amide linkages formed between an alpha-amino group of one amino acid and the alpha carboxyl group of another.
- The reaction is a dehydration reaction: a water molecule is removed, and the linked amino acids are referred to as amino acid residues.
- The peptide C-N Bond has a partial double bond character. Due to the partial double bond character, two possible configurations, cis and trans, are observed for a peptide bond in polypeptides.

- The alpha carbon (C α) in the centre of each amino acid is held in the main chain by two rotatable bonds. The dihedral (torsion) angles of these bonds are called Phi and Psi (Greek letters, ϕ and ψ). In fact, most Phi and Psi angle combinations are impossible because two atoms cannot occupy the same space.

- Most values of ϕ and ψ are not allowed due to steric interference between atoms in the polypeptide backbone and amino acid side chains.
- The combination of ϕ and ψ values permitted in peptide backbone or that are not permitted due to steric constraints were first determined by G.N Ramachandran.
- These permitted values can be visualized on a two-dimensional plot called a Ramachandran plot.

- The Ramachandran plot is a plot of the torsional angles - phi (ϕ)and psi (ψ) - of the residues (amino acids) contained in a peptide.
- By making a Ramachandran plot, protein structural scientists can determine which torsional angles are permitted and obtain insight into peptides' structure.

