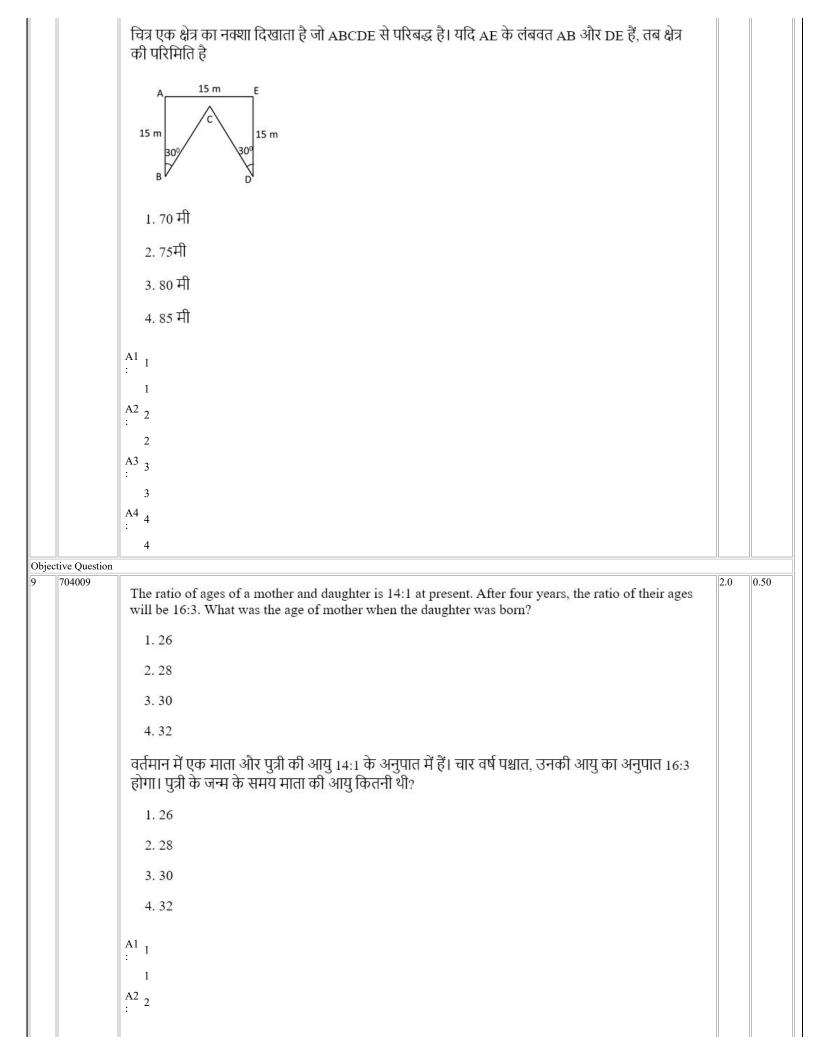
PREVIEW QUESTION BANK(Dual)

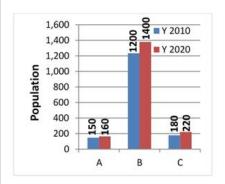
Module Name : MATHEMATICAL SCIENCES Exam Date : 07-Jun-2023 Batch : 15:00-18:00

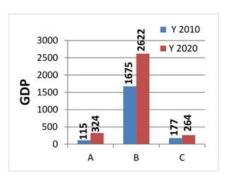

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negat Marl
ject	ive Question			
A		A and B have in their collection, coins of Re. 1, Rs. 2, Rs. 5 and Rs. 10 in the ratio 3:2:2:1 and 4:3:2:1, respectively. The total number of coins with each of them is equal. If the value of coins with A is Rs. 270/-, what is the value of the coins (in Rs) with B ?	2.0	0.50
		1. 213		
		2. 240		
		3. 275		
		4. 282		
		सिक्कों के अपने अपने संग्रह में $\bf A$ और $\bf B$ के पास 1 रु, 2 रु, 5 रु, और 10 रु के सिक्के क्रमशः 3:2:2:1 और 4:3:2:1 के अनुपात में हैं। सिक्कों की कुल संख्या प्रत्येक के पास समान है। यदि $\bf A$ के सिक्कों की कीमत 270 रु है, $\bf B$ के सिक्कों की कीमत (रु में) कितनी है?		
		1. 213		
		2. 240		
		3. 275		
		4. 282		
		A1 1 :		
		1		
		A2 2 :		
		2		
		A3 3 :		
		3		
		A4 ₄ :		
	. 0 .:	4		
	ive Question 704002		2.0	0.50
		If the speed of a train is increased by 20%, its travel time between two stations reduces by 2 hrs. If its speed is decreased by 20%, the travel time increases by 3 hrs. What is the normal duration of travel (in hrs)?		
		1. 11.5		
		2. 12.0		
		3. 13.2		
		4. 14.0		

	यदि एक रेलगाड़ी की गति 20% बढ़ा दी जाये तो दो स्टेशनों के बीच इसकी यात्रा का समय 2 घंटे घट जाता है। यदि इसकी गति 20% कम कर दी जाये तो यात्रा का समय 3 घंटे बढ़ जाता है। यात्रा में सामान्यतः कितना समय (घंटों में) लगता है?		
	1. 11.5		
	2. 12.0		
	3. 13.2		
	4. 14.0		
	A1 1		
	1		
	A2 2		
	A3 3		
	3		
	A4 4 :		
	· 4		
Objective Ques	tion		
704003	Person A tells the truth 30% of the times and B tells the truth 40% of the times, independently. What is the minimum probability that they would contradict each other?	2.0	0.50
	1. 0.18		
	2. 0.42		
	3. 0.46		
	4. 0.50		
	एक व्यक्ति A, 30% बार सच बोलता है और स्वतंत्र रूप से व्यक्ति B, 40% बार सच बोलता है। वे दोनों एकदूसरे का खंडन करेंगे, इसकी न्यूनतम प्रायिकता कितनी है?		
	1. 0.18		
	2. 0.42		
	3. 0.46		
	4. 0.50		
	A1 1		
	A2 2		
	A3 3		
	3		
	3 A4 . 4		

1 1	tive Question 704004		2.0	0.50
	701001	The standard deviation of data $x_1, x_2, x_3,, x_n$ is σ ($\sigma > 0$). Then the standard deviation of data $3x_1+2, 3x_2+2, 3x_3+2,, 3x_n+2$ is	2.0	0.50
		 3σ σ 		
		$3. 3\sigma + 2$		
		4.9σ		
		डाटा $x_1, x_2, x_3,, x_n$ का मानक विचलन σ (σ >0)। तब डाटा $3x_1+2, 3x_2+2, 3x_3+2,, 3x_n+2$ का मानक		
		विचलन है		
		1. 3σ		
		2. σ		
		$3. 3\sigma + 2$		
		4. 9σ		
		A1 : 1		
		1		
		A2 2 : 2		
		A3 3		
		3		
		A4 ₁ :		
hiaa	tiva Ovastian	4		
	tive Question 704005		2.0	0.50
	704003	A device needs 4 batteries to run. Each battery runs for 2 days. If there are a total of 6 batteries available, what is the maximum number of days for which the device can be run by strategically replacing the batteries till all the batteries are completely drained of power?	2.0	0.50
		1. 2		
		2. 3 3. 4		
		4. 5		
		एक उपकरण के चालन में 4 बैटरियां आवश्यक हैं। प्रत्येक बैटरी 2 दिन चलती है। 6 बैटरियों को रणनीतिक रूप से बदल कर उपकरण को अधिकतम कितने दिनों के लिए चलाया जा सकता है जब तक कि उनकी शक्ति पूर्णतः समाप्त न हो जाये?		
		1. 2		
		2. 3		
			[]	
		3. 4		

		A1 1		
		$A2_2$		
		A3 3		
		A4 ₄		
		4		
Object	tive Question 704006		2.0	0.50
0	/04006	The difference of the squares of two distinct two-digit numbers with one being obtained by reversing the digits of the other is always divisible by	2.0	0.30
		1. 4		
		2. 6		
		3. 10		
		4. 11		
		दो पृथक दो-अंकों की संख्याओं के वर्गों का अंतर, जिनमें से एक संख्या दूसरी संख्या के अंकों को उलट कर बनायी गयी हो, जिससे हमेशा विभाज्य है, वह है		
		1.4		
		2. 6		
		3. 10		
		4. 11		
		A1 ₁		
		1		
		A^2 2		
		$A3_3$		
		: 3 3		
		A4 4		
		:		
OI.	tive O	4		
7	tive Question 704007		2.0	0.50
		A person takes loan of Rs. 1,50,000 at a compound interest rate of 10% per annum. If the loan is repaid at the end of the 3rd year, what is the total interest paid?		
		1. 45000		
		2. 82600		
		3. 94600		
		4. 49650		

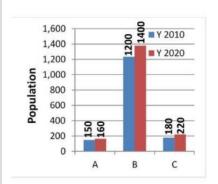

	एक व्यक्ति 1,50,000 रु का ऋण चक्रवृद्धि ब्याज दर 10% प्रतिवर्ष पर लेता है। यदि ऋण को तीसरे) वर्ष की समाप्ति पर चुका दिया जाये तो कुल कितना ब्याज अदा किया जायेगा?		
	1. 45000		
	2. 82600		
	3. 94600		
	4. 49650		
	A1 ₁		
	1		
	A2 2 :		
	2		
	A3 ₃ :		
	3 A4 4		
	: ⁴		
Objective Question	<u> </u>	<u> </u>	
8 704008	The figure shows map of a field bounded by ABCDE. If AB and DE are perpendicular to AE, then the perimeter of the field is	2.0	0.50
	15 m E 15 m D 15 m		
	1. 70 m		
	2. 75 m		
	3. 80 m		
	4. 85 m		

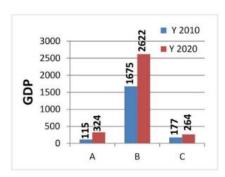


		2		
		A3 3		
		3		
		A4 ₄ :		
		4		
	tive Question			
10	704010	Five identical incompressible spheres of radius 1 unit are stacked in a pyramidal form as shown in the figure. The height of the structure is	2.0	0.50
		1. $2 + \sqrt{2}$		
		$2 \cdot 2 + \sqrt{3}$		
		3. $2+2\sqrt{2/3}$		
		4. 3		
		इकाई त्रिज्या के पांच एकसमान असंपीड्य गोलों का एक ढेर पिरामिड के रूप में चित्र में दर्शाये अनुसार बनाया गया है। इस संरचना की ऊंचाई है		
		Top view		
		शीर्ष दृश्य		
		1. $2 + \sqrt{2}$		
		$2{2+\sqrt{3}}$		
		3. $2+2\sqrt{2/3}$		
		4. 3		
		A1 ₁ :		
		1		
		A2 ₂		
		2		
		A3 3 :		
		3		
		A4 ₁ ₂		
		4		
Object	tive Question			

704011	In an assembly election, parties A, B, C, D and E won 30, 25, 20, 10 and 4 seats, respectively; whereas independents won 9 seats. Based on this data, which of the following statements must be INCORRECT? 1. No party has majority. 2. A and C together can form the government. 3. A and D with the support of independents get the majority. 4. An MLA from E can become Chief Minister. एक विधान सभा के चुनावों में दलों A, B, C, D, और E ने क्रमशः 30, 25, 20, 10, और 4 स्थानों पर विजय पायी, जबकि निर्दिलियों ने 9 स्थानों पर विजय प्राप्त की। इन आंकड़ों के आधार पर, निम्नलिखित में से कौनसा कथन ग़लत होगा? 1. किसी भी दल को बहुमत नहीं है। 2. A और C मिल कर सरकार बना सकते हैं।	2.0	0.50
	3. A और D, निर्दलियों के साथ मिल कर बहुमत पाते हैं।		
	4. E का एक विधायक मुख्यमंत्री बन सकता है।		
	A1 1 :		
	1 A2 2 :		
	2 A3 3		
	: 3		
	A4 ₄ :		
Objective Question	4		
12 704012		2.0	0.50

The populations and gross domestic products (GDP) in billion USD of three countries A, B and C in the years 2010 and 2020 are shown in the two figures below.





In terms of increase in per capita GDP from 2010-2020, their ranking from high to low is

- 1. A, B, C
- 2. B, A, C
- 3. B, C, A
- 4. C, A, B.

वर्षों 2010 और 2020 में तीन देशों A, B, और C की जनसँख्या और, अरब अमेरिकी डॉलर में सकल घरेलू उत्पाद (GDP) को दो चित्रों में नीचे दिया गया है।

2010 से 2020 में प्रति व्यक्ति जीडीपी में वृद्धि के रूप में, उनकी उच्च से निम्न श्रेणी है

- 1. A, B, C
- 2. B, A, C
- 3. B, C, A
- 4. C, A, B.

A1

.

A2 ,

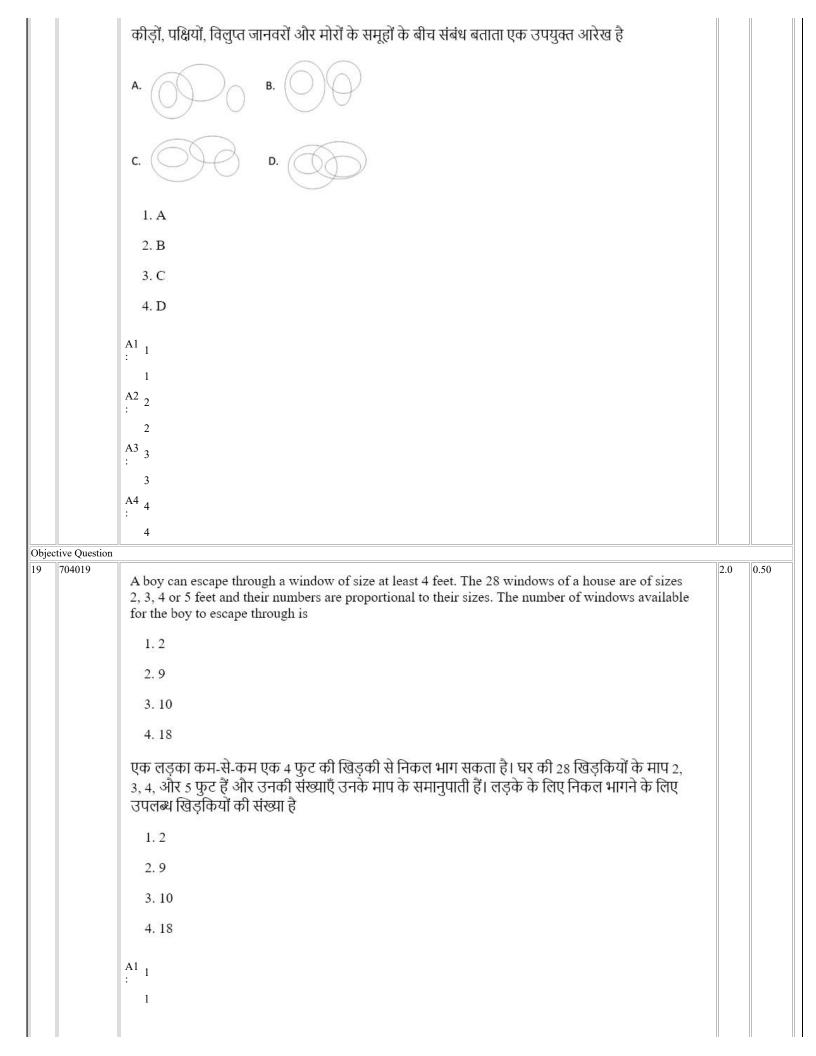
2

A3

13

3

A4

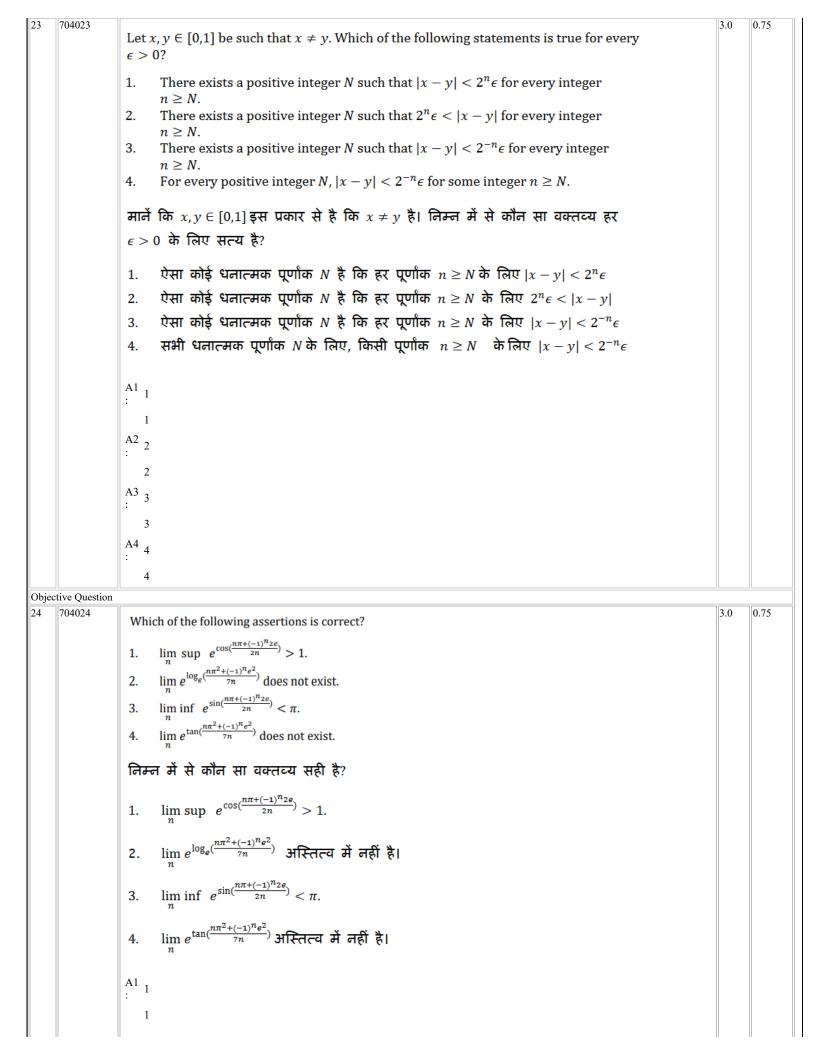

4

Objective	Question		
13 704	Consider the following paragraph:	2.0	0.50
	THE ABILITY TO REASON ACCURATELY IS VERY IMPORTANT, AS IS THE ABILITY TO COUNT. AS AN EXERCISE IN BOTH, LET US COUNT HOW MANY TIMES THE LETTER "E" OCCURS IN THIS PARAGRAPH. THE CORRECT COUNT IS		
	Which option when put in the blank in the above paragraph will make the final sentence accurate?		
	1. SIXTEEN		
	2. SEVENTEEN		
	3. EIGHTEEN		
	4. NINETEEN		
	निम्नलिखित अनुच्छेद पर गौर करें:		
	THE ABILITY TO REASON ACCURATELY IS VERY IMPORTANT, AS IS THE ABILITY TO COUNT. AS AN EXERCISE IN BOTH, LET US COUNT HOW MANY TIMES THE LETTER "E" OCCURS IN THIS PARAGRAPH. THE CORRECT COUNT IS उपर्युक्त अनुच्छेद के रिक्त स्थान में किस विकल्प का रखना अंतिम वाक्य को एकदम सही बना देगा?		
	1. SIXTEEN		
	2. SEVENTEEN		
	3. EIGHTEEN		
	4. NINETEEN		
	A1 1		
	1		
	A2 ₂ :		
	A3 3 :		
	$\begin{vmatrix} 3 \\ A4 \end{vmatrix}$		
	: ⁴		
Objective			
14 704	Two datasets A and B have the same mean. Which of the following MUST be true?	2.0	0.50
	1. Sum of the observations in A = Sum of the observations in B.		
	2. Mean of the squares of the observations in A = Mean of the squares of the observations in B.		
	3. If the two datasets are combined, then the mean of the combined dataset = mean of A + mean of B.		
	4. If the two datasets are combined, then the mean of the combined dataset = mean of A.		

		आंकड़ों के दो समूहों A और B के माध्य समान हैं। निम्नलिखित में से कौनसा आवश्यक रूप से सत्य होना चाहिए?		
		1. A के प्रेक्षणों का योग = B के प्रेक्षणों का योग		
		2. A के प्रेक्षणों के वर्गों का माध्य = B के प्रेक्षणों के वर्गों का माध्य		
		3. यदि आंकड़ों के दोनों समूहों का संयोजन कर लिया जाये, तब संयोजित आंकड़ों के समूह का माध्य = A का माध्य + B का माध्य		
		4. यदि आंकड़ों के दोनों समूहों का संयोजन कर लिया जाये, तब संयोजित आंकड़ों के समूह का माध्य = A का माध्य		
		A1 1:		
		1		
		A2 ₂ :		
		A3 3		
		: 3 3		
		A4 4		
		4		
Objec	tive Question			
15	704015	In a meeting of 45 people, there are 40 people who know one another and the remaining know no one. People who know each other only hug, whereas those who do not know each other only shake hands. How many handshakes occur in this meeting?	2.0	0.50
		1. 225		
		2. 10		
		3. 210		
		4. 200		
		45 लोगों की एक बैठक में, 40 लोग एकदूसरे को जानते हैं और शेष किसी को भी नहीं जानते हैं। जो लोग एकदूसरे को जानते हैं, केवल गले मिलते हैं, जबकि जो एकदूसरे को नहीं जानते हैं केवल हाथ मिलाते हैं। इस बैठक में कितने हाथ-मिलान होते हैं?		
		1. 225		
		2. 10		
		3. 210		
		4. 200		
		A1 1		
		A2 2		
		A3 3		
		•		

		A4 ₄		
		4		
bject	tive Question	<u> </u>		<u> </u>
6	704016	In a group of 7 people, 4 have exactly one sibling and 3 have exactly two siblings. Two people selected at random from the group, what is the probability that they are NOT siblings?	2.0	0.50
		1. 5/21		
		2. 16/21		
		3. 3/7		
		4. 4/7		
		एक समूह जिसमें 7 लोग हैं, 4 के ठीक एक सहोदर है और 3 के ठीक दो सहोदर हैं। समूह से याद्दच्छिक रूप से चियत दो लोगों की क्या प्रायिकता है कि वे सहोदर नहीं हैं?		
		1. 5/21		
		2. 16/21		
		3. 3/7		
		4. 4/7		
		A1 ₁ :		
		1		
		A2 ₂ :		
		2 A3 3		
		3		
		A4 ₄ :		
		4		
	704017		2.0	0.50
	,,,,,,	On a spherical globe of radius 10 units, the distance between $\bf A$ and $\bf B$ is 25 units. If it is uniformly expanded to a globe of radius 50 units, the distance between them in the same units would be		
		1. 75		
		2. 125		
		3. 150		
		4. 625		
	1		ll l	

Okina	tivo Operation	एक 10 इकाई त्रिज्या के गोलाकार ग्लोब पर A और B के बीच की दूरी 25 इकाई है। यदि इसे एकरूपता से 50 इकाई त्रिज्या के ग्लोब में विस्तारित किया जाता है, उन्हीं इकाइयों में उनके (A और B के) बीच की दूरी होगी 1. 75 2. 125 3. 150 4. 625 All 1 1 A2 2 2 2 A3 3 3 A4 4 4 4		
Objec 18	704018	An annualists discuss to design the relationships between the actoronics DISECTS DIDDS	2.0	0.50
		An appropriate diagram to depict the relationships between the categories INSECTS, BIRDS, EXTINCT ANIMALS and PEACOCKS is		
		A. () () () () () () () () () (
		c. D.		
		1. A		
		2. B		
		3. C		
		4. D		


		A2 2		
		$A3_3$		
		3		
		A4 ₄		
		4		
Objec	tive Question	<u> </u>		
20	704020		2.0	0.50
		In an examination containing 10 questions, each correct answer is awarded 2 marks, each incorrect answer is awarded -1 and each unattempted question is awarded zero. Which of the following CANNOT be a possible score in the examination?		
		19		
		2. –7		
		3. 17		
		4. 19		
		एक 10 प्रश्नों की परीक्षा में प्रत्येक सही उत्तर के लिए 2 अंक दिए जाते हैं, प्रत्येक ग़लत उत्तर के लिए —1 अंक दिया जाता है, और प्रत्येक छोड़े गए प्रश्न के लिए शून्य दिया जाता है। परीक्षा में निम्नलिखित में से कौनसा संभावित प्राप्तांक नहीं हो सकता है?		
		19		
		2. –7		
		3. 17		
		4. 19		
		A1 ₁ :		
		1		
		$A2_2$		
		; 2		
		A3 3		
		3		
		A4 ₄ :		
		4		
Objec	tive Question			
21	704021	Suppose S is an infinite set. Assuming that the axiom of choice holds, which of the following is true?	3.0	0.75
		1. <i>S</i> is in bijection with the set of rational numbers.		
		2. <i>S</i> is in bijection with the set of real numbers.		
		3. S is in bijection with $S \times S$.		
		4. S is in bijection with the power set of S .		

मानें कि S एक अनंत समुच्चय है। यह मानते हुए कि चयन का अभिगृहीत (axiom of choice) लागू है, निम्न में से कौन सा सत्य है? S परिमेय संख्याओं के सम्चच्य के साथ एकैकी आच्छादन में है। S वास्तविक संख्याओं के सम्चच्य के साथ एकैकी आच्छादन में है। 2. $S \times S$ के साथ S एकैकी आच्छादन में है। 3. S के घात समुच्चय (power set) के साथ S एकैकी आच्छादन में है। A1 ₁ A2 2 2 A3 ₃ 3 A4 4 Objective Question 22 704022 3.0 0.75 Consider the series $\sum_{n=1}^{\infty} a_n$, where $a_n = (-1)^{n+1}(\sqrt{n+1} - \sqrt{n})$. Which of the following statements is true? 1. The series is divergent. The series is convergent. 2. 3. The series is conditionally convergent. 4. The series is absolutely convergent. श्रेणी $\sum_{n=1}^{\infty}a_n$, पर विचार करें जहां $a_n=(-1)^{n+1}(\sqrt{n+1}-\sqrt{n})$ है। निम्न वक्तव्यों में से कौन सा सत्य है? श्रेणी अपसारी (divergent) है। 1. श्रेणी अभिसारी (convergent) है। श्रेणी सशर्त (conditionally) अभिसारी है। श्रेणी परम (absolutely) अभिसारी है। A1 ₁ $^{\mathrm{A2}}$ $_{\mathrm{2}}$ 2 A3 ₃

3

4

Objective Question

	$\begin{pmatrix} A2 & 2 \end{pmatrix}$		
	•		
	A3 3 :		
	3		
	A4 4		
	· 4		
Objective Que	stion		
25 704025	How many real roots does the polynomial $x^3 + 3x - 2023$ have?	3.0	0.75
	1. 0		
	3. 2		
	4. 3		
	बहुपद $x^3 + 3x - 2023$ के कितने वास्तिविक मूल हैं ?		
	1. 0		
	2. 1		
	3. 2		
	4. 3		
	A1 1		
	A2 2		
	A3 3		
	A4 4 :		
	4		
Objective Que 26 704026		3.0	0.75
704020	Which one of the following functions is <i>uniformly continuous</i> on the interval $(0,1)$?	3.0	
	$1. f(x) = \sin\frac{1}{x}$		
	$2. \qquad f(x) = e^{-1/x^2}$		
	1. $f(x) = \sin \frac{1}{x}$ 2. $f(x) = e^{-1/x^2}$ 3. $f(x) = e^x \cos \frac{1}{x}$ 4. $f(x) = \cos x \cos \frac{\pi}{x}$		
	$4. f(x) = \cos x \cos \frac{\pi}{x}$		

अंतराल (0,1) पर निम्न फलनों में से कौन सा एक-समानतः संतत है?

$$1. \qquad f(x) = \sin\frac{1}{x}$$

$$2. \qquad f(x) = e^{-1/x^2}$$

$$3. \quad f(x) = e^x \cos \frac{1}{x}$$

$$4. f(x) = \cos x \cos \frac{\pi}{x}$$

3

Objective Question

704027 Let $l \geq 1$ be a positive integer. What is the dimension of the \mathbb{R} -vector space of all polynomials in two variables over $\mathbb R$ having a total degree of at most l?

> 1. l+1

2.
$$l(l-1)$$

3.
$$l(l+1)/2$$

4.
$$(l+1)(l+2)/2$$

मानें कि $l \geq 1$ एक धनात्मक पूर्णांक है। $\mathbb R$ पर कुल अधिकतम l घात (degree) वाले सभी द्विचर बहुपदों की ℝ-सदिश समष्टि की विमा क्या है?

1.
$$l+1$$

2.
$$l(l-1)$$

3.
$$l(l+1)/2$$

4.
$$(l+1)(l+2)/2$$

A1 ₁

A2 ₂

2

A3 ₃

3

4

Objective Question

0.75

3.0

Let T be a linear operator on \mathbb{R}^3 . Let $f(X) \in \mathbb{R}[X]$ denote its characteristic polynomial. Consider the following statements.

- (a). Suppose T is non-zero and 0 is an eigen value of T. If we write f(X) = Xg(X) in $\mathbb{R}[X]$, then the linear operator g(T) is zero.
- (b). Suppose 0 is an eigenvalue of T with at least two linearly independent eigen vectors. If we write f(X) = Xg(X) in $\mathbb{R}[X]$, then the linear operator g(T) is zero.

Which of the following is true?

- 1. Both (a) and (b) are true.
- Both (a) and (b) are false.
- 3. (a) is true and (b) is false.
- 4. (a) is false and (b) is true.

मानें कि \mathbb{R}^3 पर T रैखिक संकारक (linear operator) है। मानें कि $f(X) \in \mathbb{R}[X]$ इसका अभिलक्षणिक बहुपद है। निम्न वक्तव्यों पर विचार करें

- (a). माने कि T शून्येतर है तथा T का एक अभिलक्षणिक मान (eigen value) 0 है। यदि हम $\mathbb{R}[X]$ में f(X) = Xg(X) लिखें, तो रैखिक संकारक g(T) शून्य है।
- (b). मार्ने कि T का एक अभिलक्षणिक मान 0 है, जिसके कम से कम दो रैखित: स्वतंत्र (linearly independent) अभिलक्षणिक सिंदिश हैं। यदि हम $\mathbb{R}[X]$ में f(X) = Xg(X) लिखें तो रैखिक संकारक g(T) शून्य है।

निम्न में से कौन सा सत्य है?

- 1. (a) तथा (b) दोनों सत्य है।
- 2. (a) तथा (b) दोनों असत्य है।
- 3. (a) सत्य है तथा (b) असत्य है।
- 4. (a) असत्य है तथा (b) सत्य है।

A1 :

1

A2 2

2

A3 3

3

A4 :

4

Objective Question

Let A be a 3×3 matrix with real entries. Which of the following assertions is **FALSE**? 1. A must have a real eigenvalue. 2. If the determinant of *A* is 0, then 0 is an eigenvalue of *A*. 3. If the determinant of A is negative and 3 is an eigenvalue of A, then A must have three real eigenvalues. If the determinant of A is positive and 3 is an eigenvalue of A, then A must have 4. three real eigenvalues. A को वास्तविक प्रविष्टियों वाली 3×3 आव्युह मानें। निम्न में से कौन सा वक्तव्य **असत्य** है ? A का कोई वास्तविक अभिलक्षणिक मान होना ही चाहिए। 1. 2. यदि A का सारणिक 0 है, तब A का एक अभिलक्षणिक मान 0 है। यदि A का सारणिक ऋणात्मक है तथा A का एक अभिलक्षणिक मान 3 है, तब A के तीन वास्तविक अभिलक्षणिक मान होंगें ही। यदि A का सारणिक धनात्मक है, तथा A का एक अभिलक्षणिक मान 3 है, तब Aके तीन वास्तविक अभिलक्षणिक मान होंगें ही। A1 ₁ A2 ₂ 2 A3 ₃ 3 A4 4 Objective Question 0.75 3.0 Let A be a 3 \times 3 real matrix whose characteristic polynomial p(T) is divisible by T^2 . Which of the following statements is true? 1. The eigenspace of A for the eigenvalue 0 is two-dimensional. 2. All the eigenvalues of A are real. $A^3 = 0$. 3. A is diagonalizable. 4. मार्ने कि A एक 3×3 वास्तविक प्रविष्टियों वाला आव्यूह है जिसका अभिलक्षणिक बहुपद p(T) है जो T^2 से भाज्य है। निम्न वक्तव्यों में से कौन सा सत्य है? अभिलक्षणिक मान 0 के लिए A की अभिलक्षणिक समष्टि द्वि-विमीय है। 1. A के सभी अभिलक्षणिक मान वास्तविक हैं। 2. $A^3 = 0$. A विकर्णनीय (diagonalizable) है।

704030

A1

A2 2 : 2 A3 3 : 3 A4 4 : 4		
A3 3 : 3 A4 4 : 4		
: 3 A4 4 : 4		
A4 4 : 4		
4		
Let $x=(x_1,\cdots,x_n)$ and $y=(y_1,\cdots,y_n)$ denote vectors in \mathbb{R}^n for a fixed $n\geq 2$. Which of the following defines an inner product on \mathbb{R}^n ?	3.0	0.75
1. $\langle x, y \rangle = \sum_{i,j=1}^{n} x_i y_j$		
2. $\langle x, y \rangle = \sum_{i,j=1}^{n} (x_i^2 + y_j^2)$		
3. $\langle x, y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$		
4. $\langle x, y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$		
मार्ने कि किसी निश्चित $n\geq 2$ के लिए \mathbb{R}^n में $x=(x_1,\cdots,x_n)$ तथा $y=(y_1,\cdots,y_n)$ दो सिदशों को निरूपित करते हैं। निम्न में से कौन सा \mathbb{R}^n पर आंतरिक गुणन (inner product) परिभाषित करता है?		
1. $\langle x, y \rangle = \sum_{i,j=1}^{n} x_i y_j$		
2. $\langle x, y \rangle = \sum_{i,j=1}^{n} (x_i^2 + y_j^2)$		
3. $\langle x, y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$		
4. $\langle x, y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$		
A1 1		
1		
A2 2		
A3 3		
3		
A4 4		
4		
		0.75
	2. $\langle x,y \rangle = \sum_{i,j=1}^{n} (x_i^2 + y_j^2)$ 3. $\langle x,y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$ 4. $\langle x,y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$ मार्ने कि किसी निश्चित $n \geq 2$ के लिए \mathbb{R}^n में $x = (x_1, \dots, x_n)$ तथा $y = (y_1, \dots, y_n)$ दो सिंदिशों को निश्चित करते हैं। निम्न में से कौन सा \mathbb{R}^n पर आंतरिक गुणन (inner product) परिभाषित करता है? 1. $\langle x,y \rangle = \sum_{i,j=1}^{n} x_i y_j$ 2. $\langle x,y \rangle = \sum_{i,j=1}^{n} (x_i^2 + y_j^2)$ 3. $\langle x,y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$ 4. $\langle x,y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$ Al 1 1 A^2 2 2 A^3 3 3 A^4 4	2. $\langle x,y \rangle = \sum_{i,j=1}^{n} (x_i^2 + y_j^2)$ 3. $\langle x,y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$ 4. $\langle x,y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$ मार्ने कि किसी निश्चित $n \geq 2$ के लिए \mathbb{R}^n में $x = (x_1, \cdots, x_n)$ तथा $y = (y_1, \cdots, y_n)$ दो सिदेशों को निरूपित करते हैं। निम्न में से कौन सा \mathbb{R}^n पर आंतरिक गुणन (inner product) परिभाषित करता है? 1. $\langle x,y \rangle = \sum_{i,j=1}^{n} x_i y_j$ 2. $\langle x,y \rangle = \sum_{i,j=1}^{n} (x_i^2 + y_j^2)$ 3. $\langle x,y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$ 4. $\langle x,y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$ All 1 1 A2 2 2 A3 3 3 A4 4 4

Consider the quadratic form Q(x, y, z) associated to the matrix

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

Let

$$S = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \mid Q(a, b, c) = 0 \right\}.$$

Which of the following statements is FALSE?

- 1. The intersection of S with the xy-plane is a line.
- 2. The intersection of S with the xz-plane is an ellipse.
- 3. S is the union of two planes.
- 4. Q is a degenerate quadratic form.

निम्न आव्यूह से सहचारी द्विघात रूप (quadratic form) Q(x,y,z) पर विचार करें

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

मानें कि

$$S = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \mid Q(a, b, c) = 0 \right\}.$$

निम्न वक्तव्यों में से कौन सा असत्य है?

- 1. S का xy समतल के साथ सर्वनिष्ठ एक रेखा है।
- 2. S का xz- समतल के साथ सर्वनिष्ठ एक दीर्घवृत है।
- ऽ दो समतलों का सिम्मलन है।
- 4. Q एक अपभ्रष्ट द्विघात रूप है।

A1

1

 $\overset{A2}{\cdot}\ _{2}$

2

A3 3

3

A4 4

4

Objective Question

33 704033

Let
$$f(z) = \exp(z + \frac{1}{z})$$
, $z \in \mathbb{C} \setminus \{0\}$. The residue of f at $z = 0$ is

$$1. \qquad \sum_{l=0}^{\infty} \frac{1}{(l+1)!}$$

$$\sum_{l=0}^{\infty} \frac{1}{l!(l+1)}$$

3.
$$\sum_{l=0}^{\infty} \frac{1}{l!(l+1)!}$$

$$4. \qquad \sum_{l=0}^{\infty} \frac{1}{(l^2+l)!}$$

मार्ने कि $f(z)=\exp(z+\frac{1}{z}), z\in\mathbb{C}\backslash\{0\}$. तब f का z=0 पर अवशेष है A1 ₁ A2 2 A3 ₃ 3 A4 4 704034 3.0 0.75 Let f be an entire function that satisfies $|f(z)| \le e^y$ for all $z = x + iy \in \mathbb{C}$, where $x, y \in \mathbb{R}$. Which of the following statements is true? $f(z) = ce^{-iz}$ for some $c \in \mathbb{C}$ with $|c| \le 1$. $f(z) = ce^{iz}$ for some $c \in \mathbb{C}$ with $|c| \le 1$.

Objective Question

 $f(z) = e^{-ciz}$ for some $c \in \mathbb{C}$ with $|c| \le 1$.

 $f(z) = e^{ciz}$ for some $c \in \mathbb{C}$ with $|c| \le 1$.

मानें कि f ऐसा सर्वत्र वैश्लेषिक फलन है जो $|f(z)| \le e^y$ को सभी $z = x + iy \in \mathbb{C}$, जहां $x,y \in \mathbb{R}$, के लिए संतुष्ट करता है। निम्न वक्तव्यों में से कौन सा वक्तव्य सत्य है?

 $f(z) = ce^{-iz}$ कुछ $c \in \mathbb{C}$ के लिए जहां $|c| \le 1$. 1.

 $f(z) = ce^{iz}$ कुछ $c \in \mathbb{C}$ के लिए जहां $|c| \leq 1$.

 $f(z) = e^{-ciz}$ कुछ $c \in \hat{a}$ लिए जहां $|c| \le 1$. 3.

 $f(z) = e^{ciz}$ कुछ $c \in \hat{a}$ लिए जहां $|c| \leq 1$.

A1 ₁

A2 2

2

A3 ₃

A4 4

Objective Question

Consider the function f defined by $f(z) = \frac{1}{1-z-z^2}$ for $z \in \mathbb{C}$ such that $1-z-z^2 \neq 0$.

Which of the following statements is true?

- 1. f is an entire function.
- 2. f has a simple pole at z = 0.
- 3. f has a Taylor series expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where coefficients a_n are recursively defined as follows: $a_0 = 1$, $a_1 = 0$ and $a_{n+2} = a_n + a_{n+1}$ for $n \ge 0$.
- 4. f has a Taylor series expansion $f(z)=\sum_{n=0}^{\infty}a_n\,z^n$, where coefficients a_n are recursively defined as follows: $a_0=1, a_1=1$ and $a_{n+2}=a_n+a_{n+1}$ for $n\geq 0$.

ऐसे $z \in \mathbb{C}$ कि $1-z-z^2 \neq 0$ हो, के लिए $f(z) = \frac{1}{1-z-z^2}$ द्वारा परिभाषित फलन f पर विचार करें। निम्न वक्तर्व्यों में से कौन सा सत्य है?

- 1. f सर्वत्र वैश्लेषिक फलन है।
- 2. f का z=0 पर एकघात अनंतक (simple pole) है।
- 3. f का टेलर श्रेणी विस्तार $f(z)=\sum_{n=0}^{\infty}a_n\,z^n$ है, जहां गुणांकों $a_n,\ n\geq 0$ को $a_0=1,a_1=0$ तथा $a_{n+2}=a_n+a_{n+1}$ की तरह पुनरावर्ती रूप में परिभाषित किया है।
- 4. f का टेलर श्रेणी विस्तार $f(z)=\sum_{n=0}^{\infty}a_n\,z^n$ है, जहां गुणांकों $a_n,\ n\geq 0$ को $a_0=1,a_1=1$ तथा $a_{n+2}=a_n+a_{n+1}$ की तरह पुनरावर्ती रूप में परिभाषित किया है।

A1 : 1

A2 2

2

A3 3

3

A4 4

1

Objective Question

36 704036

Let $\mathcal C$ be the positively oriented circle in the complex plane of radius 3 centered at the origin. What is the value of the integral

$$\int_C \frac{dz}{z^2 (e^z - e^{-z})}?$$

- 1. $i\pi/12$
- 2. $-i\pi/12$
- 3. $i\pi/6$
- 4. $-i\pi/6$

मानें कि सम्मिश्र समतल में, C एक धनात्मक रूप से अभिविन्यस्त वृत्त है जो मूल बिंद् पर केंद्रित एवं त्रिज्या 3 का है। तब समाकलन

$$\int_C \frac{dz}{z^2(e^z - e^{-z})}$$

का क्या मान है?

- 1. $i\pi/12$
- 2. $-i\pi/12$
- 3. $i\pi/6$
- 4. $-i\pi/6$

A1 ₁

A2 ₂

A3 ₃

3

A4 4

Objective Question

704037

Which of the following equations can occur as the class equation of a group of order 10?

- 1. $10 = 1 + 1 + \dots + 1$ (10-times).
- 2. 10 = 1 + 1 + 2 + 2 + 2 + 2.
- 3. 10 = 1 + 1 + 1 + 2 + 5.
- 4. 10 = 1 + 2 + 3 + 4.

निम्न में से कौन सी समीकरण कोटि (order) 10 के किसी समूह का क्लास समीकरण (class equation) हो सकती है?

- 1. $10 = 1 + 1 + \dots + 1$ (10-बार).
- 2. 10 = 1 + 1 + 2 + 2 + 2 + 2.
- 3. 10 = 1 + 1 + 1 + 2 + 5.
- 10 = 1 + 2 + 3 + 4.

A1 ₁

 A2 $_2$

2

A3 ₃

3

Objective Question

704038

0.75

0.75

```
The number of solutions of the equation x^2 = 1 in the ring \mathbb{Z}/105\mathbb{Z} is
                 1.
                 2.
                       2
                 3.
                       4
                       8
                 4.
                वलय \mathbb{Z}/105\mathbb{Z} में, समीकरण x^2=1 के हलों की संख्या है
                  1.
                        2
                  2.
                  3.
                        4
                        8
                  4.
                A1 <sub>1</sub>
                ^{A2} _2
                    2
                    3
                A4 4
Objective Question
    704039
                                                                                                                           3.0
                                                                                                                                 0.75
                 Let p be a prime number. Let G be a group such that for each g \in G there exists an
                 n \in \mathbb{N} such that g^{p^n} = 1. Which of the following statements is FALSE?
                       If |G| = p^6, then G has a subgroup of index p^2.
                 1.
                  2.
                       If |G| = p^6, then G has at least five normal subgroups.
                  3.
                       Center of G can be infinite.
                       There exists G with |G| = p^6 such that G has exactly six normal subgroups.
                 मानें कि p अभाज्य संख्या है। G को ऐसा समूह मानें कि प्रत्येक g \in G के लिए एक ऐसा
                 n \in \mathbb{N} है कि g^{p^n} = 1 है। निम्न वक्तव्यों में से कौन सा असत्य है?
                       यदि |G| = p^6, तब G का p^2 सूचकांक वाला उपसमूह है।
                  1.
                       यदि |G| = p^6, तब G के कम से कम 5 प्रसामान्य उपसमूह हैं।
                  2.
                     G का केन्द्र अनंत हो सकता है।
                       ऐसा G है जिसके लिए |G|=p^6, इस प्रकार कि G के यथायथ 6 प्रसामान्य
                  4.
                       उपसमूह हैं।
                A1 <sub>1</sub>
                A2 2
```

	A4 4		
	4		
jective Ques	ion		
704040	Consider ${\mathbb R}$ with the usual topology. Which of the following assertions is correct?	3.0	0.75
	1. A finite set containing 33 elements has at least 3 different Hausdorff topologies.		
	2. Let X be a non-empty finite set with a Hausdorff topology. Consider $X \times X$ with the product topology. Then, every function $f: X \times X \to \mathbb{R}$ is continuous.		
	3. Let X be a discrete topological space having infinitely many elements. Let $f: \mathbb{R} \to X$ be a continuous function and $g: X \to \mathbb{R}$ be any non-constant function. Then the range of $g \circ f$ contains at least 2 elements.		
	4. If a non-empty metric space X has a finite dense subset, then there exists a discontinuous function $f: X \to \mathbb{R}$.		
	साधारण संस्थिति के साथ ℝपर विचार कीजिए। निम्न में कौन सा वक्तव्य सही है?		
	1. 33 अवयवों वाले एक परिमित समुच्चय की कम से कम 3 भिन्न हाउज्डॉर्फ		
	सांस्थितियां (topologies) हैं।		
	$2.$ X को हाउज्डॉर्फ संस्थिति वाला अरिक्त परिमित समुच्चय माने। $X \times X$ पर		
	गुणन संस्थिति के साथ विचार करें। तब हर फलन $f: X \times X \to \mathbb{R}$ संतत है।		
	3. मानें कि X एक अनंत अवयवों वाला वियुक्त संस्थितिक समष्टि है। मानें कि		
	$f\colon \mathbb{R} o X$ संतत फलन तथा $g\colon X o \mathbb{R}$ कोई भी अनियत फलन है। तब $g\circ f$ की		
	रेंज (range) में कम से कम 2 अवयव हैं।		
	4. यदि किसी अरिक्त दूरीक समष्टि X में परिमित सघन उपसमूह है, तब एक		
	असंतत फलन $f:X o\mathbb{R}$ का अस्तित्व है।		
	A1 1		
	1 A2 ₂		
	:		
	2		
	A3 3		
	3		
	A4 ₄ :		
	4		
jective Ques		3.0	0.75
, 0.10.11	Let $f\colon \mathbb{R}^2 o \mathbb{R}$ be a locally Lipschitz function. Consider the initial value problem		
	$\dot{x} = f(t, x), x(t_0) = x_0$		
	for $(t_0, x_0) \in \mathbb{R}^2$. Suppose that $J(t_0, x_0)$ represents the maximal interval of existence for the initial value problem. Which of the following statements is true?		
	$1. J(t_0,x_0)=\mathbb{R}.$		
	2. $J(t_0, x_0)$ is an open set.		
	3. $J(t_0, x_0)$ is a closed set. 4. $J(t_0, x_0)$ could be an empty set.		
	1. J(v0, x0) could be all ellipty sec.		

माने कि $f: \mathbb{R}^2 \to \mathbb{R}$ स्थानीयतः लिपशिट्ज फलन है। निम्न प्रारंभिक मान समस्या पर विचार करें

$$\dot{x} = f(t, x), \quad x(t_0) = x_0$$

जो $(t_0,x_0)\in\mathbb{R}^2$ के लिए है। मानें कि $J(t_0,x_0)$ प्रारंभिक मान समस्या के लिए अधिकतम अस्तित्व अंतराल है। निम्न वक्तर्व्यों में से कौन सा सत्य है?

- 1. $J(t_0, x_0) = \mathbb{R}$.
- 2. $J(t_0, x_0)$ एक विवृत्त समुच्चय है।
- 3. $J(t_0, x_0)$ एक संवृत्त समुच्चय है।
- 4. $J(t_0, x_0)$ रिक्त समुच्चय हो सकता है।
- A1 :
 - 1
- A2 2
 - 2
- A3 3
- 3
- A4 4

Objective Question

42 | 704042

Suppose x(t) is the solution of the following initial value problem in \mathbb{R}^2

$$\dot{x} = Ax$$
, $x(0) = x_0$, where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

Which of the following statements is true?

- 1. x(t) is a bounded solution for some $x_0 \neq 0$.
- 2. $e^{-6t}|x(t)| \to 0$ as $t \to \infty$, for all $x_0 \ne 0$.
- 3. $e^{-t}|x(t)| \to \infty$ as $t \to \infty$, for all $x_0 \neq 0$.
- 4. $e^{-10t}|x(t)| \to 0$ as $t \to \infty$, for all $x_0 \ne 0$.

मानें कि \mathbb{R}^2 में x(t) निम्न प्रारंभिक मान समस्या का हल है

$$\dot{x} = Ax$$
, $x(0) = x_0$, $\exists \vec{s} i \quad A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

निम्न में से कौन सा वक्तव्य सत्य है ?

- 1. कुछ $x_0 \neq 0$ के लिए, x(t) परिबद्ध हल है
- 2. सब $x_0 \neq 0$ के लिए, $e^{-6t}|x(t)| \rightarrow 0$ जैसे-जैसे $t \rightarrow \infty$
- 3. सब $x_0 \neq 0$ के लिए, $e^{-t}|x(t)| \rightarrow \infty$ जैसे-जैसे $t \rightarrow \infty$
- 4. सब $x_0 \neq 0$ के लिए, $e^{-10t}|x(t)| \rightarrow 0$ जैसे-जैसे $t \rightarrow \infty$
- A1 1
 - 1
- A2 ₂
 - 2
- A3 ₃

3.0

	\parallel 3		
	A4 4		
	: 4		
Objective Question			
13 704043	Let $u(x,y)$ be the solution of the Cauchy problem	3.0	0.75
	$uu_x + u_y = 0, x \in \mathbb{R}, \ y > 0,$ $u(x,0) = x, x \in \mathbb{R}.$		
	Which of the following is the value of $u(2,3)$?		
	1. 2 2. 3 3. 1/2 4. 1/3		
	मार्ने कि $u(x,y)$ निम्न कौशी समस्या का हल है		
	$uu_x + u_y = 0, x \in \mathbb{R}, \ y > 0,$ $u(x,0) = x, x \in \mathbb{R}.$		
	निम्निलिखित में से कौन $u(2,3)$ का मान है?		
	1. 2 2. 3 3. 1/2 4. 1/3		
	A1 :		
	1 A2 2		
	A3 3		
	: 3 3		
	A4 4 :		
hipativa Oti	4		
bjective Question 704044	Let $u(x,t)$ be the solution of	3.0	0.75
	$u_{tt} - u_{xx} = 0, 0 < x < 2, t > 0,$ $u(0,t) = 0 = u(2,t), \forall t > 0,$ $u(x,0) = \sin(\pi x) + 2\sin(2\pi x), 0 \le x \le 2,$ $u_t(x,0) = 0, 0 \le x \le 2.$		
	Which of the following is true?		
	1. $u(1,1) = -1$. 2. $u(1/2,1) = 0$. 3. $u(1/2,2) = 1$. 4. $u_t(1/2,1/2) = \pi$.		

मानें कि u(x,t) निम्न का हल है:

$$u_{tt} - u_{xx} = 0,$$
 $0 < x < 2, t > 0,$ $u(0,t) = 0 = u(2,t),$ $\forall t > 0,$ $u(x,0) = \sin(\pi x) + 2\sin(2\pi x),$ $0 \le x \le 2,$ $u_t(x,0) = 0,$ $0 \le x \le 2.$

निम्न में से कौन सा सत्य है?

1.
$$u(1,1) = -1$$
.

2.
$$u(1/2,1) = 0$$
.

3.
$$u(1/2,2) = 1$$
.

4.
$$u_t(1/2,1/2) = \pi$$
.

_

.

A4 4

Objective Question

45 704045 Which of the

Which of the following values of a,b,c and d will produce a quadrature formula

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(1) + cf'(-1) + df'(1)$$

0.75

that has degree of precision 3?

1.
$$a = 1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

2.
$$a = -1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

3.
$$a = 1, b = 1, c = -\frac{1}{3}, d = \frac{1}{3}$$

4.
$$a = 1, b = -1, c = \frac{1}{3}, d = -\frac{1}{3}$$

a,b,c तथा d के निम्नलिखित में से कौन से मान निम्न क्षेत्रकलन सूत्र देंगे

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(1) + cf'(-1) + df'(1)$$

जिसकी परिशुद्धता की कोटि 3 है?

1.
$$a = 1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

2.
$$a = -1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

3.
$$a = 1, b = 1, c = -\frac{1}{3}, d = \frac{1}{3}$$

4.
$$a = 1, b = -1, c = \frac{1}{3}, d = -\frac{1}{3}$$

A1 :

A2 : 2

2

A3 3

.

A4

,

Objective Question

46 704046 Consider th

Consider the variational problem (P)

$$J(y(x)) = \int_0^1 [(y')^2 - y|y| \ y' + xy] \ dx, \quad y(0) = 0, \ y(1) = 0.$$

0.75

Which of the following statements is correct?

- 1. (P) has no stationary function (extremal).
- 2. $y \equiv 0$ is the only stationary function (extremal) for (P).
- 3. (P) has a unique stationary function (extremal) y not identically equal to 0.
- 4. (P) has infinitely many stationary functions (extremal).

निम्न विचरण समस्या (P) पर विचार करें

$$J(y(x)) = \int_0^1 [(y')^2 - y|y| \ y' + xy] \ dx, \quad y(0) = 0, \ y(1) = 0.$$

निम्न वक्तव्यों में से कौन सा सही है ?

- 1. (P) का कोई स्तब्ध फलन (चरम) नहीं है।
- 2. (P) के लिए $y \equiv 0$ एक मात्र स्तब्ध फलन (चरम) है।
- 3. (P) के लिए एक अद्वितीय स्तब्ध फलन (चरम) y है जो 0 के सर्वथासम नहीं है।
- (P) के अनंततः बह् स्तब्ध फलन (चरम) हैं।

A1 :

A2 2

2

		A3 ₃	
		3	
		A4 ₄ :	
		4	
Ohiec	tive Question		

0.75

704047

For the unknown $y: [0,1] \to \mathbb{R}$, consider the following two-point boundary value problem:

$$\begin{cases} y''(x) + 2y(x) = 0 & \text{for } x \in (0,1), \\ y(0) = y(1) = 0. \end{cases}$$

It is given that the above boundary value problem corresponds to the following integral equation:

$$y(x) = 2 \int_0^1 K(x, t) y(t) dt$$
 for $x \in [0,1]$.

Which of the following is the kernel K(x, t)?

1.
$$K(x,t) = \begin{cases} t(1-x) & \text{for } t < x \\ x(1-t) & \text{for } t > x \end{cases}$$

2.
$$K(x,t) = \begin{cases} t^2(1-x) & \text{for } t < x \\ x^2(1-t) & \text{for } t > x \end{cases}$$

3.
$$K(x,t) = \begin{cases} \sqrt{t} (1-x) & \text{for } t < x \\ \sqrt{x} (1-t) & \text{for } t > x \end{cases}$$

4.
$$K(x,t) = \begin{cases} \sqrt{t^3} (1-x) & \text{for } t < x \\ \sqrt{x^3} (1-t) & \text{for } t > x \end{cases}$$

अज्ञात $y:[0,1] \to \mathbb{R}$ के लिए, निम्न द्वि-बिंदू सीमा मान समस्या पर विचार करें

$$\begin{cases} y''(x) + 2y(x) = 0 & \text{for } x \in (0,1), \\ y(0) = y(1) = 0. \end{cases}$$

यह दिया गया है कि उपर दी गई सीमा मान समस्या निम्न समाकल समीकरण के संदर्भ में है

$$y(x) = 2 \int_0^1 K(x, t) y(t) dt$$
 $x \in [0,1]$ के लिए

निम्न में कौन सा अष्टि K(x,t) है?

1.
$$K(x,t) = \begin{cases} t(1-x) & t < x \text{ के लिए} \\ x(1-t) & t > x \text{ के लिए} \end{cases}$$

2.
$$K(x,t) = \begin{cases} t^2(1-x) & t < x \text{ के लिए} \\ x^2(1-t) & t > x \text{ के लिए} \end{cases}$$

3.
$$K(x,t) = \begin{cases} \sqrt{t} (1-x) & t < x \text{ के लिए} \\ \sqrt{x} (1-t) & t > x \text{ के लिए} \end{cases}$$

4.
$$K(x,t) = \begin{cases} \sqrt{t^3} (1-x) & t < x \text{ के लिए} \\ \sqrt{x^3} (1-t) & t > x \text{ के लिए} \end{cases}$$

A1 ₁

	\parallel A2 $_2$		
	2		
	A3 3		
	3		
	A4 4 :		
	4		
bjective Question	<u> </u>		
8 704048	Consider the constants a and b such that the following generalized coordinate transformation from (p,q) to (P,Q) is canonical	3.0	0.75
	$Q=pq^{(a+1)}, P=q^b.$		
	What are the values of a and b ?		
	1. $a = -1, b = 0$ 2. $a = -1, b = 1$ 3. $a = 1, b = 0$ 4. $a = 1, b = -1$		
	नियतांकों a तथा b पर इस प्रकार विचार कीजिए कि (p,q) से (P,Q) पर निम्न		
	प्रसामान्यीकृत निर्देशांक रूपांतरण विहित है		
	$Q=pq^{(a+1)}, P=q^b.$		
	a तथा b के मान क्या हैं?		
	1. $a = -1, b = 0$ 2. $a = -1, b = 1$ 3. $a = 1, b = 0$ 4. $a = 1, b = -1$		
	A1 1		
	1		
	A2 2		
	2		
	A3 3 :		
	3		
	A4 4 :		
	4		
bjective Question	1 1		
9 704049	If $f(x)$ is a probability density on the real line, then which of the following is NOT a valid probability density?	3.0	0.75
	1. $f(x+1)$ 2. $f(2x)$		
	3. $2f(2x-1)$ 4. $3x^2f(x^3)$		

यदि वास्तविक रेखा पर f(x) कोई प्रायिकता घनत्व है तो निम्न में से कौन सा वैध प्रायिकता घनत्व नहीं है?

- f(x+1)
- f(2x)
- 3. 2f(2x-1)
- $3x^{2}f(x^{3})$
- A1 ₁

- A4 4

Objective Question

704050

Which of the following is a valid cumulative distribution function?

1.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{2+x^2}{3+x^2} & \text{if } x \ge 0 \end{cases}$$

2.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{2+x^2}{3+2x^2} & \text{if } x \ge 0 \end{cases}$$

1.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{2+x^2}{3+x^2} & \text{if } x \ge 0 \end{cases}$$
2.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{2+x^2}{3+2x^2} & \text{if } x \ge 0 \end{cases}$$
3.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{2\cos(x)+x^2}{4+x^2} & \text{if } x \ge 0 \end{cases}$$
4.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{1+x^2}{4+x^2} & \text{if } x \ge 0 \end{cases}$$

4.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{1+x^2}{4+x^2} & \text{if } x \ge 0 \end{cases}$$

निम्न में से कौन सा फलन एक वैध संचयी बंटन है?

1.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{यदि } x < 0, \\ \frac{2+x^2}{3+x^2} & \text{यदि } x \ge 0 \end{cases}$$

2.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{ut} x < 0, \\ \frac{2+x^2}{3+2x^2} & \text{ut} x \ge 0 \end{cases}$$
3.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{ut} x < 0, \\ \frac{2\cos(x)+x^2}{4+x^2} & \text{ut} x \ge 0 \end{cases}$$
4.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{ut} x < 0, \\ \frac{1+x^2}{4+x^2} & \text{ut} x \ge 0 \end{cases}$$

$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{alg } x < 0, \\ \frac{2\cos(x) + x^2}{x^2} & \text{alg } x \ge 0 \end{cases}$$

4.
$$F(x) = \begin{cases} \frac{1}{2+x^2} & \text{यदि } x < 0, \\ \frac{1+x^2}{1+x^2} & \text{यदि } x \ge 0 \end{cases}$$

- A1 ₁

- A3 ₃

	3		
	A4 ₄		
Objective Questic	n 4		
51 704051	Let $\{\epsilon_n : n \geq 1\}$ represent the results of independent rolls of a dice with probability of the face i turning up being $p_i > 0$ for $i = 1, 2,, 6$ and $\sum_{i=1}^6 p_i = 1$. Let $\{X_n : n \geq 0\}$ be the Markov chain on the state space $\{1, 2,, 6\}$ where $X_n = \max\{\epsilon_1, \epsilon_2,, \epsilon_{n+1}\}$. Then, $\lim_{n \to \infty} P(X_n = 4 X_0 = 3)$ equals	3.0	0.75
	1. p_4		
	2. 1		
	3. $1-p_3$		
	4. 0		
	मार्ने कि $\{\epsilon_n:n\geq 1\}$, पासे को स्वतंत्र रूप से फेंके जाने पर, सतह i के ऊपर आने की		
	प्रायिकता $p_i>0$ होने पर जहां $i=1,2,,6$ तथा $\sum_{i=1}^6 p_i=1$ है, मिलने वाला परिणाम बताता है। मानें कि $\{X_n:n\geq 0\}$ अवस्था समष्टि $\{1,2,,6\}$ पर मार्कोव		
	शृंखला है जहां $X_n = \max\{\epsilon_1, \epsilon_2,, \epsilon_{n+1}\}$ है, तब $\lim_{n\to\infty} P(X_n = 4 X_0 = 3)$ निम्न के		
	बराबर है		
	$1. p_4$		
	2. 1		
	3. $1-p_3$		
	4. 0		
	A1 1		
	A2 ₂		
	2		
	A3 3 :		
	3		
	A4 4 :		
Objective Questic	n 4		
52 704052	Let X_1, X_2, X_3 and X_4 be independent and identically distributed $Bernoulli(\frac{1}{3})$ random	3.0	0.75
	variables. Let $X_{(1)}$, $X_{(2)}$, $X_{(3)}$ and $X_{(4)}$ denote the corresponding order statistics. Which of the following is true?		
	1. $X_{(1)}$ and $X_{(4)}$ are independent.		
	2. Expectation of $X_{(2)}$ is $\frac{1}{2}$.		
	3. Variance of $X_{(2)}$ is $\frac{8}{81}$.		
	4. $X_{(4)}$ is a degenerate random variable.		

मानें कि X_1, X_2, X_3 तथा X_4 स्वतंत्र तथा सर्वथा समबंटित बर्नूली $(\frac{1}{3})$ यादिछक चर हैं। मानें कि $X_{(1)}, X_{(2)}, X_{(3)}$ तथा $X_{(4)}$ तदनुसार संगत क्रम सांख्यिकी दर्शांते हैं। निम्न में से कौन सा सत्य है? X₍₁₎तथा X₍₄₎ स्वतंत्र हैं। 2. $X_{(2)}$ की प्रत्याशा $\frac{1}{2}$ है। 3. $X_{(2)}$ का प्रसरण $\frac{8}{81}$ है। 4. $X_{(4)}$ एक अपभ्रष्ट याद्दिछक चर है। A1 1 A2 2 A3 ₃ A4 4 Objective Question 704053 0.75 Consider the random sample {3,6,9} of size 3 from a normal distribution with mean $\mu \in (-\infty, 5]$ and variance 1. Then the maximum likelihood estimate of μ is 1. 2. प्रसामान्य बंटन में से माध्य $\mu \in (-\infty, 5]$ तथा प्रसरण 1 वाले आकार 3 के याद्दिछक प्रतिदर्श $\{3,6,9\}$ पर विचार करें। तब μ का अधिकतम संभाविता आकलन (maximum likelihood estimate) है 1. 2. 3. A1 ₁ A2 2

Objective Question

A3 ₃

A4 4

54 704054

Let X be a Poisson random variable with mean λ . Which of the following parametric function is not estimable? λ^{-1} 1. 2. λ^2 3. मानें कि X, λ माध्य वाला प्वासों याद्दिछक चर है। निम्न में से कौन सा प्राचलिक फलन आकलनीय नहीं है? 1. λ^{-1} 2. λ λ^2 $e^{-\lambda}$ A1 ₁ A2 2 A3 3 A4 4 4 3.0 0.75 Suppose $X_1, X_2, ..., X_n$ are independently and identically distributed $N(\theta, 1)$ random variables, for $\theta \in \mathbb{R}$. Suppose $\bar{X} = n^{-1} \sum_{i=1}^n X_i$ denotes the sample mean and let $t_{0.975,n-1}$ denote the 0.975-quantile of a Student's-t distribution with n-1 degrees of freedom. Which of the following statements is true for the following interval $\bar{X} \pm t_{.975,n-1} \frac{1}{\sqrt{n}}$? The interval is a confidence interval for θ with confidence level of exactly 0.95. 1. 2. The interval is a confidence interval for θ with confidence level being less than 0.95. The interval is a confidence interval for θ with confidence level being more than 0.95. The interval is not a confidence interval. मानें कि $\theta \in \mathbb{R}$ के लिए, X_1, X_2, \dots, X_n स्वतंत्र रूप से तथा सर्वथा समबंटित $N(\theta, 1)$ यादच्छिक चर हैं। मानें कि $ar{X}=n^{-1}\sum_{i=1}^n X_i$ प्रतिदर्श का माध्य दर्शाता है तथा $t_{0.975,n-1}$ स्टूडेंट-t परीक्षण का 0.975 विभाजक दर्शाता है जिसकी n-1 स्वातंत्र्य कोटि हैं। निम्न अंतराल के लिए दिये वक्तव्यों में से कौन सा सही है $\bar{X} \pm t_{.975,n-1} \frac{1}{\sqrt{n}}$? यह अंतराल यथायथ 0.95 विश्वास्यता स्तर के साथ θ के लिए विश्वास्यता यह अंतराल θ का 0.95 से कम विश्वास्यता स्तर वाला विश्वास्यता अंतराल है। यह अंतराल θ का 0.95 से अधिक विश्वास्यता स्तर वाला विश्वास्यता अंतराल है। यह अंतराल विश्वास्यता अंतराल नहीं है।

Objective Question 55 | 704055

	A3	1 2 2 2 3 3 3 4 4	
Object	ive Question	4	

0.75

3.0

704056

Let $X_1, ..., X_7$ and $Y_1, ..., Y_9$ be two random samples drawn independently from two populations with continuous CDFs F and G respectively. Consider the Wald-Wolfowitz run test in the context of the following two sample testing problems: $H_0: F(x) = G(x) \ \forall \ x \ \text{vs.} \ H_1: F(x) \neq G(x) \ \text{for some} \ x.$ If the random variable R denotes the total number of runs in the combined ordered arrangement of the two given samples, then which of the following is true?

1.
$$P_{H_0}(R=6) = \frac{28}{286}, P_{H_0}(R=9) = \frac{28}{143}$$

2.
$$P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{15}{286}$$

3.
$$P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{28}{143}$$

4.
$$P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{15}{286}$$

मार्ने कि $X_1, ..., X_7$ तथा $Y_1, ..., Y_9$ क्रमशः संतत CDFs वाली दो समष्टियां F तथा G से स्वतंत्र रूप से निकाले गए दो यादृच्छिक प्रतिदर्श हैं। निम्न दो प्रतिदर्श परीक्षण समस्या के संदर्भ में वाल्ड-वूल्फोवित्स रन परीक्षण पर विचार करें : H_0 : $F(x) = G(x) \forall x \text{ vs.}$ $H_1: F(x) \neq G(x)$, किसी x के लिए। यदि याद्दिखक चर R दिये गये दो प्रतिदर्शों के संयुक्त क्रमिक विन्यास के कूल रन (runs) की संख्या हो तो निम्न में से कौन सा सत्य

1.
$$P_{H_0}(R=6) = \frac{28}{286}, P_{H_0}(R=9) = \frac{28}{143}$$

2.
$$P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{15}{286}$$

3.
$$P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{28}{143}$$

4.
$$P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{15}{286}$$

A1 ₁

A2 2

A3 ₃

3.0	0.75
3.0	0.75
3.0	0.75
3.0	0.75
3.0	0.75

Suppose $\mathbf{X} = (X_1, X_2, X_3, X_4)^T$ has a multivariate normal $N_4(\mathbf{0}, I_2 \otimes \Sigma)$, where I_2 is the 2×2 identity matrix, \otimes is the Kronecker product, and $\Sigma = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Define

 $Z=egin{pmatrix} X_1 & X_2 \ X_3 & X_4 \end{pmatrix}$ and $Q=((Q_{ij}))=Z^TZ$. Suppose χ^2_n denotes a chi-square random variate with n degrees of freedom, and $W_m(n,\Sigma)$ denotes a Wishart distribution of order m with parameters n and Σ . The distribution of $(Q_{11}+Q_{12}+Q_{21}+Q_{22})$ is

- 1. $W_1(2,2)$
- 2. $W_1(1,2)$
- 3. $W_1(2,1)$
- 4. $2 \chi_4^2$

मार्ने कि $\mathbf{X}=(X_1,X_2,X_3,X_4)^T$ का बहुचर प्रसामान्य $N_4(\mathbf{0},I_2\otimes \Sigma)$ है, जहां I_2 तत्समक 2×2 आव्यूह है, \otimes क्रोनेकर गुणनफल है, तथा $\Sigma=\begin{bmatrix}2&-1\\-1&2\end{bmatrix}$ है। परिभाषित करें कि $Z=\begin{pmatrix}X_1&X_2\\X_3&X_4\end{pmatrix}$ तथा $Q=\begin{pmatrix}(Q_{ij})\end{pmatrix}=Z^TZ$ है। मार्ने कि χ_n^2 स्वातंत्र्य कोटि n वाला काई-वर्ग याद्दिछक विचर, तथा $W_m(n,\Sigma)$ प्राचलों n एवं Σ के साथ m कोटि का विशार्ट बंटन है। $Q_{11}+Q_{12}+Q_{21}+Q_{22}$) का बंटन है

- 1. $W_1(2,2)$
- 2. $W_1(1,2)$
- 3. $W_1(2,1)$
- 4. $2 \chi_4^2$

A1 . 1

1

A2 2

2

A3 3

3

A4 . 4

_

Objective Question

59 704059

Let $X = (X_1, X_2)^T$ follow a bivariate normal distribution with mean vector $(0,0)^T$ and covariance matrix Σ such that

$$\Sigma = \begin{bmatrix} 5 & -3 \\ -3 & 10 \end{bmatrix}.$$

The mean vector and covariance matrix of $Y = (X_1, 5 - 2X_2)^T$ are

1.
$$\begin{pmatrix} 0 \\ 5 \end{pmatrix}$$
, $\begin{bmatrix} 5 & -3 \\ -3 & 40 \end{bmatrix}$

2.
$$\begin{pmatrix} 0 \\ 5 \end{pmatrix}$$
, $\begin{bmatrix} 5 & -6 \\ -6 & 20 \end{bmatrix}$.

3.
$$\binom{0}{5}$$
, $\begin{bmatrix} 5 & 3 \\ 3 & 20 \end{bmatrix}$.

4.
$$\begin{pmatrix} 0 \\ 5 \end{pmatrix}$$
, $\begin{bmatrix} 5 & 6 \\ 6 & 40 \end{bmatrix}$.

3.0 0.75

मार्ने कि $X=(X_1,X_2)^T$ द्विचर प्रसामान्य बंटन का पालन करता है जबिक माध्य सिंदश $(0,0)^T$ तथा सह प्रसरण आव्यूह Σ इस प्रकार है कि

$$\Sigma = \begin{bmatrix} 5 & -3 \\ -3 & 10 \end{bmatrix}.$$

 $Y = (X_1, 5 - 2X_2)^T$ के माध्य सिंदश तथा सह-प्रसरण आव्यूह हैं

- 1. $\binom{0}{5}$, $\begin{bmatrix} 5 & -3 \\ -3 & 40 \end{bmatrix}$. 2. $\binom{0}{5}$, $\begin{bmatrix} 5 & -6 \\ -6 & 20 \end{bmatrix}$. 3. $\binom{0}{5}$, $\begin{bmatrix} 5 & 3 \\ 3 & 20 \end{bmatrix}$. 4. $\binom{0}{5}$, $\begin{bmatrix} 5 & 6 \\ 6 & 40 \end{bmatrix}$.

- A1 ₁

Objective Question

704060

Consider the linear programming problem

maximize x + 3y, subject to $A {x \choose y} \le b$,

3.0

0.75

where $A = \begin{pmatrix} -1 & -1 \\ 0 & 1 \\ -1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$ and $b = \begin{pmatrix} -1 \\ 5 \\ 5 \\ 14 \\ 0 \end{pmatrix}$. Which of the following statements is true?

- The objective function attains its maximum at $\binom{0}{5}$ in the feasible region. 1.
- The objective function attains its maximum at $\binom{-2}{3}$ in the feasible region. 2.
- The objective function attains its maximum at $\binom{1}{0}$ in the feasible region. 3.
- The objective function does not attain its maximum at $\binom{14}{0}$ in the feasible 4. region.

रैखिक प्रोगामन समरस्या पर विचार करें

$$x + 3y$$
 को अधिकतमीकृत करें यदि $A {x \choose y} \le b$,

जहां
$$A=egin{pmatrix} -1 & -1 \\ 0 & 1 \\ -1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 तथा $b=egin{pmatrix} -1 \\ 5 \\ 5 \\ 14 \\ 0 \end{pmatrix}$ हैं।

निम्न वक्तव्यों में से कौन सा सत्य है?

- 1. उद्देश्य फलन का सुसंगत क्षेत्र में उच्चतम $\binom{0}{5}$ पर मिलता है।
- 2. उद्देश्य फलन का सुसंगत क्षेत्र में उच्चतम $\binom{-2}{3}$ पर मिलता है।
- 3. उद्देश्य फलन का सुसंगत क्षेत्र में उच्चतम $\binom{1}{0}$ पर मिलता है।
- 4. उद्देश्य फलन का सुसंगत क्षेत्र में उच्चतम $\binom{14}{0}$ पर नहीं है।

A1 : 1

1

A2 2

2

A3 :

.

A4

Multiple Response 61 704061

Let $\{x_n\}$ be a sequence of positive real numbers. If $\sigma_n=\frac{1}{n}(x_1+x_2+\cdots x_n)$, then which of the following are true? (Here \lim sup denotes the \lim supremum of a sequence.)

4.75

0.00

- 1. If $\limsup \{x_n\} = \ell$ and $\{x_n\}$ is decreasing, then $\limsup \{\sigma_n\} = \ell$.
- 2. $\limsup \{x_n\} = \ell$ if and only if $\limsup \{\sigma_n\} = \ell$.
- 3. If $\lim \sup \left\{ n \left(\frac{x_n}{x_{(n+1)}} 1 \right) \right\} < 1$, then $\sum_n x_n$ is convergent.
- 4. If $\lim \sup \left\{ n \left(\frac{x_n}{x_{(n+1)}} 1 \right) \right\} < 1$, then $\sum_n x_n$ is divergent.

मार्ने कि $\{x_n\}$ धनात्मक वास्तविक संख्याओं का एक अनुक्रम है।

यदि $\sigma_n=rac{1}{n}(x_1+x_2+\cdots x_n)$ तब निम्न में से कौन से सत्य हैं ? (यहां \limsup अनुक्रम के सीमा उच्चक को दर्शाता है)

- यदि $\limsup\{x_n\}=\ell$ है तथा $\{x_n\}$ घट रहा है, तब $\limsup\{\sigma_n\}=\ell$ है।
- $\limsup\{x_n\}=\ell$ है यदि और केवल यदि $\limsup\{\sigma_n\}=\ell$ है।
- यदि $\limsup \left\{ n \left(\frac{x_n}{x_{(n+1)}} 1 \right) \right\} < 1$ है, तब $\sum_n x_n$ अभिसारी है।
- यदि $\limsup \left\{ n \left(\frac{x_n}{x_{(n+1)}} 1 \right) \right\} < 1$ है, तब $\sum_n x_n$ अपसारी है।

A1 ₁

A2 2

A3 ₃

3

A4 4

Multiple Response

704062

Under which of the following conditions is the sequence $\{x_n\}$ of real numbers convergent?

- The subsequences $\{x_{(2n+1)}\}$, $\{x_{2n}\}$ and $\{x_{3n}\}$ are convergent and have the same limit.
- 2. The subsequences $\{x_{(2n+1)}\}$, $\{x_{2n}\}$ and $\{x_{3n}\}$ are convergent.
- The subsequences $\{x_{kn}\}_n$ are convergent for every $k \geq 2$.
- $\lim_{n} |x_{(n+1)} x_n| = 0.$

निम्न में से किन परिस्थितियों में वास्तिवक संख्याओं का अनुक्रम $\{x_n\}$ अभिसारी है?

- उपानुक्रम $\{x_{(2n+1)}\}$, $\{x_{2n}\}$ तथा $\{x_{3n}\}$ अभिसारी हैं तथा उनकी एक ही सीमा है। 1.
- उपानुक्रम $\{x_{(2n+1)}\}, \{x_{2n}\}$ तथा $\{x_{3n}\}$ अभिसारी हैं।
- हर $k \geq 2$ के लिए उपानुक्रम $\{x_{kn}\}_n$ अभिसारी हैं।
- $\lim_{n} |x_{(n+1)} x_n| = 0.$ 4.

A1 ₁

A2 ₂

A3 ₃

4.75

Ho of the following are true? For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = x^n$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{\log(n+1)}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+x^n}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent. If $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent. If $n \geq 1$ is fine, $n \in \mathbb{N}$ given untitled when $n \in \mathbb{N}$ fine $n \in \mathbb{N}$ and $n \in \mathbb{N}$ fine $n \in \mathbb{N}$ given untitled $n \in \mathbb{N}$ fine $n $	4.75	0.00
For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = x^n$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{\log(n+1)}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+x^n}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent. If it is also it is	4.75	0.00
For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = x^n$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{\log(n+1)}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+x^n}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent. If it is also it is	4.75	0.00
For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = x^n$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{\log(n+1)}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+x^n}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent. If it is also it is	4.75	0.00
uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{\log(n+1)}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+x^n}$ is uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent. If $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent. If $f_n\colon f_n(x) = x^n$ girl urthing wearing $f_n\colon (0,1) \to (0,1)$ and hard the hard $f_n\colon f_n(x) = \frac{x^n}{\log(n+1)}$ girl urthing wearing $f_n\colon (0,1) \to (0,1)$ and hard wearing the hard $f_n\colon f_n(x) = \frac{x^n}{\log(n+1)}$ girl urthing wearing $f_n\colon (0,1) \to (0,1)$ and hard wearing wear-hard wearing $f_n\colon f_n(x) \to (0,1)$ and hard wearing wear-hard wearing $f_n\colon f_n(x) \to (0,1)$ and hard wearing wear-hard wearing $f_n\colon f_n(x) \to (0,1)$ and hard wearing wear-hard wearing $f_n\colon f_n(x) \to (0,1)$ and hard wearing wear-hard wearing $f_n\colon f_n(x) \to (0,1)$ and hard wearing wear-hard wearing $f_n(x) \to (0,1)$ and hard wearing wearing $f_n(x) \to (0,1)$ and f		
by $f_n(x)=\frac{x^n}{\log(n+1)}$ is uniformly convergent. For $n\geq 1$, the sequence of functions $f_n\colon (0,1)\to (0,1)$ defined by $f_n(x)=\frac{x^n}{1+x^n}$ is uniformly convergent. For $n\geq 1$, the sequence of functions $f_n\colon (0,1)\to (0,1)$ defined by $f_n(x)=\frac{x^n}{1+nx^n}$ is not uniformly convergent. में से कौन से सत्य हैं? $n\geq 1$ के लिए, $f_n(x)=x^n$ द्वारा परिभाषित फलनों $f_n\colon (0,1)\to (0,1)$ का अनुक्रम एक-समानतः अभिसारी है। $n\geq 1$, के लिए, $f_n(x)=\frac{x^n}{\log(n+1)}$ द्वारा परिभाषित फलनों $f_n\colon (0,1)\to (0,1)$ का अनुक्रम एक-समानतः अभिसारी है।		
uniformly convergent. For $n \geq 1$, the sequence of functions $f_n\colon (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent. में से कौन से सत्य हैं? $n \geq 1 \text{ के लिए, } f_n(x) = x^n \text{ द्वारा परिभाषित फलनों } f_n\colon (0,1) \to (0,1) \text{ का अनुक्रम } $ $\text{va-समानत: अभिसारी है} $ $n \geq 1, \text{ के लिए, } f_n(x) = \frac{x^n}{\log(n+1)} \text{ cart utable utable } f_n\colon (0,1) \to (0,1) \text{ and } $ $\text{अनुक्रम va-समानत: अभिसारी है} $		
is not uniformly convergent. \vec{p} में से कौन से सत्य हैं? $n \geq 1$ के लिए, $f_n(x) = x^n$ द्वारा परिभाषित फलनों $f_n \colon (0,1) \to (0,1)$ का अनुक्रम एक-समानतः अभिसारी है। $n \geq 1$, के लिए, $f_n(x) = \frac{x^n}{\log(n+1)}$ द्वारा परिभाषित फलनों $f_n \colon (0,1) \to (0,1)$ का अनुक्रम एक-समानतः अभिसारी है।		
$n \geq 1$ के लिए, $f_n(x) = x^n$ द्वारा परिभाषित फलनों $f_n \colon (0,1) \to (0,1)$ का अनुक्रम एक-समानतः अभिसारी है। $n \geq 1$, के लिए, $f_n(x) = \frac{x^n}{\log(n+1)}$ द्वारा परिभाषित फलनों $f_n \colon (0,1) \to (0,1)$ का अनुक्रम एक-समानतः अभिसारी है।		
एक-समानतः अभिसारी है। $n\geq 1, \text{ के लिए, } f_n(x)=\frac{x^n}{\log(n+1)} \text{ द्वारा परिभाषित फलनों } f_n\colon (0,1)\to (0,1) \text{ का}$ अनुक्रम एक-समानतः अभिसारी है।		
अनुक्रम एक-समानतः अभिसारी है।		
अनुक्रम एक-समानतः अभिसारी है।		
$n\geq 1$ के लिए, $f_n(x)=rac{x^n}{1+nx^n}$ द्वारा परिभाषित फलनों $f_n\colon (0,1) o (0,1)$ का अनुक्रम एक-समानतः अभिसारी नहीं है।		
	4.75	0.00
ne a function $f: \mathbb{R} \to \mathbb{R}$ by		
the a function $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} \sin(\pi/x) & \text{when } x \neq 0, \\ 0 & \text{when } x = 0. \end{cases}$		
$f(x) = \begin{cases} \sin(\pi/x) & \text{when } x \neq 0, \\ 0 & \text{when } x = 0. \end{cases}$		
$f(x) = \begin{cases} \sin(\pi/x) & \text{when } x \neq 0, \\ 0 & \text{when } x = 0. \end{cases}$ which of the following subsets of \mathbb{R} , the restriction of f is a continuous function? $[-1,1]$		
ľ	$f(x) = \begin{cases} \sin(\pi/x) & \text{when } x \neq 0, \\ 0 & \text{when } x = 0. \end{cases}$ which of the following subsets of $\mathbb R$, the restriction of f is a continuous function? $[-1,1] $ $(0,1)$	$f(x) = \begin{cases} \sin(\pi/x) & \text{when } x \neq 0, \\ 0 & \text{when } x = 0. \end{cases}$ which of the following subsets of \mathbb{R} , the restriction of f is a continuous function? $[-1,1]$

फलन $f: \mathbb{R} \to \mathbb{R}$ को निम्नवत परिभाषित करें $f(x) = \begin{cases} \sin(\pi/x) & \text{ जब } x \neq 0, \\ 0 & \text{ जब } x = 0. \end{cases}$ $\mathbb R$ के निम्न उप-सम्च्ययों में से किन पर f का प्रतिबंधन (restriction) संतत फलन है? 1. [-1,1]2. (0,1) $\{0\} \cup \{(1/n): n \in \mathbb{N}\}$ 3. $\{1/2^n:n\in\mathbb{N}\}$ A1 ₁ A2 2 2 A3 3 3 A4 4 Multiple Response 704065 4.75 Define $f: \mathbb{R}^4 \to \mathbb{R}$ by f(x, y, z, w) = xw - yz. Which of the following statements are true?

1. *f* is continuous.

- if $U = \{(x, y, z, w) \in \mathbb{R}^4 : xy + zw = 0, x^2 + z^2 = 1, y^2 + w^2 = 1\}$, then f is uniformly continuous on *U*.
- if $V = \{(x, y, z, w) \in \mathbb{R}^4 : x = y, z = w\}$, then f is uniformly continuous on V.
- if $W = \{(x, y, z, w) \in \mathbb{R}^4 : 0 \le x + y + z + w \le 1\}$, then f is unbounded on W.

 $f: \mathbb{R}^4 \to \mathbb{R}$ को f(x, y, z, w) = xw - yz से परिभाषित करें। निम्न वक्तर्व्यों में से कौन से सत्य हैं ?

f संतत है

- यदि $U = \{(x, y, z, w) \in \mathbb{R}^4 : xy + zw = 0, x^2 + z^2 = 1, y^2 + w^2 = 1\}$ है, तब U पर f एक-समानतः संतत है।
- यदि $V = \{(x, y, z, w) \in \mathbb{R}^4 : x = y, z = w\}$ है, तब V पर f एक-समानतः संतत है।
- यदि $W = \{(x, y, z, w) \in \mathbb{R}^4 : 0 \le x + y + z + w \le 1\}$ है, तब W पर f अपरिबद्ध है।

1 A2 2 2 A3 ₃

A1 ₁

3 A4 4

Multiple Response

		(a).	Let f be a continuous function on $[1, \infty)$ taking non-negative values such that $\int_1^\infty f(x) dx$ converges. Then $\sum_{n\geq 1} f(n)$ converges.		
		(b).	Let f be a function on $[1, \infty)$ taking non-negative values such that $\int_1^\infty f(x) dx$ converges. Then $\lim_{x\to\infty} f(x) = 0$.		
		(c).	Let f be a continuous, decreasing function on $[1, \infty)$ taking non-negative values such that $\int_1^\infty f(x) dx$ does not converge. Then $\sum_{n\geq 1} f(n)$ does not converge.		
		147h:			
			ch of the following options are true?		
		1.	(a), (b) and (c) all are true.		
		2.	Both (a) and (b) are false.		
		3.	(c) is true.		
		4.	(b) is true.		
		निम्ब	न वक्तव्यों पर विचार करें:		
			मार्ने कि फलन f , जो $[1,\infty)$ पर संतत है एवं जिसके ऋणेतर (non-negative)		
			हैं, इस प्रकार है कि $\int_1^\infty f(x) \mathrm{d}x$ अभिसारी है। तब $\sum_{n\geq 1} f(n)$ अभिसरण करता है।		
		(b).	मार्ने कि $[1,\infty)$ पर फलन f , जिसके ऋणेतर मान हैं, इस प्रकार है कि $\int_1^\infty f(x)\mathrm{d}x$		
			अभिसारी है। तब $\lim_{x\to\infty} f(x) = 0$ है।		
		(c).	मार्ने कि फलन f , जो $[1,\infty)$ पर संतत हासमान (decreasing) है और जिसके		
			ऋणेतर मान हैं, इस प्रकार है कि $\int_1^\infty f(x)\mathrm{d}x$ अभिसारी नहीं है। तब $\sum_{n\geq 1}f(n)$ अभिसारी नहीं है।		
			$\Delta_{n\geq 1}f(n)$ should be en		
		निम्ब	न विकल्पों में से कौन से सत्य हैं?		
			(a), (b) तथा (c) सब सत्य हैं।		
			(a) तथा (b) दोनों असत्य हैं।		
			(c) सत्य है।		
		4.	(b) सत्य है।		
		A1 : 1			
		: 1			
		A2 2			
		2			
		A3 3			
		3			
		A4 4			
		: 4			
Multi	ple Response	•			
67	704067			4.75	0.00

0.00

704066

Consider the following statements:

Let μ denote the Lebesgue measure on $\mathbb R$ and μ^* be the associated Lebesgue outer measure. Let A be a non-empty subset of [0,1]. Which of the following statements are true?

- If both interior and closure of A have the same outer measure, then A is Lebesgue measurable.
- 2. If *A* is open, then *A* is Lebesgue measurable and $\mu(A) > 0$.
- 3. If *A* is not Lebesgue measurable, then the set of irrationals in *A* must have positive outer measure.
- 4. If $\mu^*(A) = 0$, then A has empty interior.

 μ को $\mathbb R$ पर लेबेग (Lebesgue) माप मानें तथा μ^* को सहचारी लेबेग बाह्य माप। मानें कि [0,1] का एक अरिक्त समुच्चय A है। निम्न वक्तव्यों में से कौन से सत्य हैं?

- यदि A के अंत: (interior) तथा संवरक (closure) दोनों के एक ही बाह्य माप हैं,
 तो A लेबेग मेय है।
- 2. यदि A विवृत्त (open) है, तब A लेबेग मेय है तथा $\mu(A)>0$ है।
- यदि A लेबेग मेय नहीं है, तब A में अपिरमेय संख्याओं के समुच्चय का बाह्य माप धनात्मक ही होगा।
- 4. यदि $\mu^*(A) = 0$, तब A का अंतः रिक्त होगा।

A1 : 1

A2 :

2 A3 ₃

3

A4 . 4

4

Multiple Response

68 704068

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

 $f(x,y) = x^2 - y^3.$

0.00

4.75

Which of the following statements are true?

- 1. There is no continuous real-valued function g defined on any interval of \mathbb{R} containing 0 such that f(x, g(x)) = 0.
- 2. There is exactly one continuous real-valued function g defined on an interval of \mathbb{R} containing 0 such that f(x, g(x)) = 0.
- 3. There is exactly one differentiable real-valued function g defined on an interval of \mathbb{R} containing 0 such that f(x, g(x)) = 0.
- 4. There are two distinct differentiable real-valued functions g on an interval of \mathbb{R} containing 0 such that f(x, g(x)) = 0.

		f(x,y) = x - y.		
		निम्न वक्तव्यों में से कौन से सत्य हैं?		
		1. $\mathbb R$ के किसी भी अंतराल, जिसमें 0 हो, पर ऐसा कोई वास्तविक मान वाला संतत		
		फलन g परिभाषित नहीं है जिसके लिए $f(x,g(x))=0$ है।		
		संतत फलन g परिभाषित है जिसके लिए $f(x,g(x))=0$ है।		
		3. ℝ के किसी अंतराल, जिसमें 0 हो, पर ऐसा केवल एक ही वास्तविक मान वाला		
		अवकलनीय फलन g परिभाषित है जिसके लिए $f(x,g(x))=0$ है।		
		$4.$ \mathbb{R} के किसी अंतराल, जिसमें 0 हो, पर दो भिन्न वास्तविक मान वाले अवकलनीय		
		फलन g परिभाषित हैं जिसके लिए $f(x,g(x))=0$ है।		
		A1 1		
		·		
		A2 ₂		
		A3 3		
		$:$ $\frac{3}{3}$		
		3		
		A4 4		
		•		
Martei	nla Dagmanaa	4		
69	ple Response		4.75	0.00
		Suppose that $f: \mathbb{R}^n \to \mathbb{R}, n \ge 2$ is a \mathcal{C}^2 function satisfying		
		$f(y) \ge f(x) + \nabla(f)(x)(y - x)$		
		for every x,y in \mathbb{R}^n . Here \overline{V} denotes the gradient. Which of the following statements		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true?		
		 for every x, y in ℝⁿ. Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 		
		 for every x, y in Rⁿ. Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 		
		 for every x, y in ℝⁿ. Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 		
		 for every x, y in Rⁿ. Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. 		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. 4. f is constant if f is bounded. #### कि $f: \mathbb{R}^n \to \mathbb{R}, n \geq 2$, एक C^2 फलन है जो \mathbb{R}^n के सभी x,y के लिए		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. ### मानें कि $f: \mathbb{R}^n \to \mathbb{R}, n \geq 2$, एक C^2 फलन है जो \mathbb{R}^n के सभी x,y के लिए $f(y) \geq f(x) + \nabla(f)(x)(y-x)$		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. 4. f is constant if f is bounded. #### कि $f: \mathbb{R}^n \to \mathbb{R}, n \geq 2$, एक C^2 फलन है जो \mathbb{R}^n के सभी x,y के लिए		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. ### मानें कि $f: \mathbb{R}^n \to \mathbb{R}, n \geq 2$, एक C^2 फलन है जो \mathbb{R}^n के सभी x,y के लिए $f(y) \geq f(x) + \nabla(f)(x)(y-x)$		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. 4. f is constant if f is bounded. 4. f is $f:\mathbb{R}^n \to \mathbb{R}, n \geq 2$, एक \mathcal{C}^2 फलन है जो \mathbb{R}^n के सभी x,y के लिए $f(y) \geq f(x) + \nabla(f)(x)(y-x)$ संतुष्ट करता है। यहां ∇ प्रवण (gradient) दर्शाता है। निम्न वक्तर्वयों में से कौन से सत्य हैं?		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. ## and f is f is f is f is equal to f is f is equal to f is f is equal to f is f in f is f in f		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. 4. f is constant if f is bounded. 4. f is $f:\mathbb{R}^n \to \mathbb{R}, n \geq 2$, एक \mathcal{C}^2 फलन है जो \mathbb{R}^n के सभी x,y के लिए $f(y) \geq f(x) + \nabla(f)(x)(y-x)$ संतुष्ट करता है। यहां ∇ प्रवण (gradient) दर्शाता है। निम्न वक्तर्वयों में से कौन से सत्य हैं?		
		for every x,y in \mathbb{R}^n . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. ## and f is f is f is f is equal to f is f is equal to f is f is equal to f is f in f is f in f		
		for every x,y in \mathbb{R}^n . Here V denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. ## and the first f is bounded. ## and the first f is f is f in		
		for every x,y in \mathbb{R}^n . Here V denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. #I if f is $f: \mathbb{R}^n \to \mathbb{R}, n \geq 2$, एक C^2 फलन है जो \mathbb{R}^n के सभी x,y के लिए $f(y) \geq f(x) + V(f)(x)(y-x)$ संतुष्ट करता है। यहां V प्रवण (gradient) दर्शाता है। िनम्न वक्तव्यों में से कौन से सत्य हैं? 1. f नियत है। 2. f अवमुखी तथा परिबद्ध है।		
		for every x,y in \mathbb{R}^n . Here V denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. #I if f is $f: \mathbb{R}^n \to \mathbb{R}, n \geq 2$, एक C^2 फलन है जो \mathbb{R}^n के सभी x,y के लिए $f(y) \geq f(x) + V(f)(x)(y-x)$ संतुष्ट करता है। यहां V प्रवण (gradient) दर्शाता है। िनम्न वक्तव्यों में से कौन से सत्य हैं? 1. f नियत है। 2. f अवमुखी तथा परिबद्ध है।		
		for every x, y in ℝ ⁿ . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. मानें कि f: ℝ ⁿ → ℝ, n ≥ 2, एक C² फलन है जो ℝ ⁿ के सभी x, y के लिए f(y) ≥ f(x) + ∇(f)(x)(y - x) संतुष्ट करता है। यहां ∇ प्रयण (gradient) दर्शाता है। िनम्न वक्तर्यों में से कौन से सत्य हैं? 1. f नियत है। 2. f अवमुखी तथा परिबद्ध है। 4. f नियत है यदि f परिबद्ध है।		
		for every x,y in \mathbb{R}^n . Here \overline{V} denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. ## f if $f: \mathbb{R}^n \to \mathbb{R}, n \geq 2$, f is f if f is expected as f if f is f if f if f is f if f is f if f if f is f if f if f if f is f if f is f if f if f if f if f is f if f is f if f		
		for every x, y in ℝ ⁿ . Here ∇ denotes the gradient. Which of the following statements are true? 1. f is constant. 2. f is convex. 3. f is convex and bounded. 4. f is constant if f is bounded. मानें कि f: ℝ ⁿ → ℝ, n ≥ 2, एक C² फलन है जो ℝ ⁿ के सभी x, y के लिए f(y) ≥ f(x) + ∇(f)(x)(y - x) संतुष्ट करता है। यहां ∇ प्रयण (gradient) दर्शाता है। िनम्न वक्तर्यों में से कौन से सत्य हैं? 1. f नियत है। 2. f अवमुखी तथा परिबद्ध है। 4. f नियत है यदि f परिबद्ध है।		

निम्नतः परिभाषित फलन $f\colon \mathbb{R}^2 o \mathbb{R}$ पर विचार करें

 $f(x,y) = x^2 - y^3.$

	\parallel 2		
	A3 3		
	: 3		
	3		
	A4 4 :		
	4		
ultiple Response			
704070	Which of the following statements are true for an arbitrary normed linear space U ?	4.75	0.00
	1. Every bounded linear functional from U to $\mathbb R$ is continuous.		
	2. U is isomorphic to its double-dual U^{**} .		
	3. For every $x \in U$, we have $ x = \sup_{ f \le 1} f(x) $, where f denotes elements of U^* .		
	U.4. The closed unit ball in U is compact.		
	निम्न वक्तव्यों में से कौन से स्वेच्छ (arbitrary) मानकित रैखिक समष्टि U के लिए सत्य		
	है?		
	₹ :		
	1. U से $\mathbb R$ तक, हर परिबद्ध रैखिक फलनक संतत है ।		
	2. U अपने द्विक-द्वैत (double-dual) U^{**} के तुल्याकारी (isomorphic) है।		
	3. हर $x \in U$ के लिए, $\ x\ = \sup_{\ f\ \le 1} f(x) $ है, जहां f से आशय U^* के अवयवों से है।		
	4. U में संवृत (closed) एकक गोलक संहत (compact) है।		
	A1 1 :		
	1		
	A2 2		
	· 2		
	A3 3		
	·		
	3		
	A4 ₄ :		
	4		
altiple Response		4.75	0.00
704071	Let <i>V</i> be the vector space of all polynomials in one variable of degree at most 10 with	4.75	0.00
	real coefficients. Let W_1 be the subspace of V consisting of polynomials of degree at most 5 and let W_2 be the subspace of V consisting of polynomials such that the sum of		
	their coefficients is 0. Let W be the smallest subspace of V containing both W_1 and W_2 .		
	Which of the following statements are true?		
	1. The dimension of W is at most 10.		
	$ 2. W = V. $ $3. W_1 \subset W_2. $		
	4. The dimension of $W_1 \cap W_2$ is at most 5.		
		II	II.

मानें कि V वास्तविक ग्णांको वाले अधिकतम 10 घात के एक चर के सभी बहुपदों की सिंदश समिष्ट है । मानें कि W_1 अधिकतम 5 कोटि वाले बहुपदों की V की उपसमिष्ट है तथा W_2 बहुपदों वाली $\,V\,$ की ऐसी उपसमिष्ट हैं कि उनके गुणांकों का योग $\,0\,$ है। $\,V\,$ की सबसे छोटे उपसमष्टि को W मार्ने जिसमें W_1 तथा W_2 दोनों हैं। निम्न वक्तव्यों में से कौन से W की विमा अधिकतम 10 है। W = V. 3. $W_1 \subset W_2$. $W_1 \cap W_2$ की विमा अधिकतम 5 है। A1 ₁ A2 ₂ 2 A3 ₃ A4 4

Multiple Response

704072

Let B be a 3 \times 5 matrix with entries from \mathbb{Q} . Assume that $\{v \in \mathbb{R}^5 \mid Bv = 0\}$ is a threedimensional real vector space. Which of the following statements are true?

 $\{v\in\mathbb{Q}^5\mid Bv=0\}$ is a three-dimensional vector space over $\mathbb{Q}.$

The linear transformation $T: \mathbb{Q}^3 \to \mathbb{Q}^5$ given by $T(v) = B^{\mathsf{t}}v$ is injective.

The column span of B is two-dimensional.

The linear transformation $T: \mathbb{Q}^3 \to \mathbb{Q}^3$ given by $T(v) = BB^{\mathsf{t}}v$ is injective.

B को $\mathbb Q$ की प्रविष्टियों वाला 3×5 आव्यूह मानें। मानें कि $\{v\in\mathbb R^5\mid Bv=0\}$ एक त्रि-विमीय वास्तविक सदिश समष्टि है। निम्न वक्तव्यों में से कौन से सत्य हैं?

 \mathbb{Q} पर $\{v \in \mathbb{Q}^5 \mid Bv = 0\}$ एक त्रि-विमीय सदिश समष्टि है।

2. रैखिक रूपांतरण $T: \mathbb{Q}^3 \to \mathbb{Q}^5$, जो $T(v) = B^{t}v$ से दिया गया है, एकैकी है।

3. B की स्तंभ विस्तृति द्वि-विमीय है।

रैखिक रूपांतरण $T: \mathbb{Q}^3 \to \mathbb{Q}^3$, जो $T(v) = BB^{\mathsf{t}}v$ से दिया गया है, एकैकी है।

A1 ₁

A2 2

A3 3

A4 4

4

Multiple Response

704073

4.75 0.00

0.00 4.75

Let V be a finite dimensional real vector space and T_1, T_2 be two nilpotent operators on V. Let $W_1 = \{v \in V: T_1(v) = 0\}$ and $W_2 = \{v \in V: T_2(v) = 0\}$. Which of the following statements are **FALSE**?

- 1. If T_1 and T_2 are similar, then W_1 and W_2 are isomorphic vector spaces.
- 2. If W_1 and W_2 are isomorphic vector spaces, then T_1 and T_2 have the same minimal polynomial.
- 3. If $W_1 = W_2 = V$, then T_1 and T_2 are similar.
- 4. If W_1 and W_2 are isomorphic, then T_1 and T_2 have the same characteristic polynomial.

मानें कि V कोई परिमित विमीय वास्तविक सिदश समिष्ट है तथा V पर T_1,T_2 दो शून्यभावी संकारक (nilpotent operators) हैं। मानें कि $W_1=\{v\in V: T_1(v)=0\}$ तथा $W_2=\{v\in V: T_2(v)=0\}$ हैं। निम्न वक्तव्यों में से कौन सा असत्य है?

- 1. यदि T_1 तथा T_2 समरूप (similar) हैं, तो W_1 तथा W_2 तुल्याकारी सदिष्ट समष्टियां हैं।
- 2. यदि W_1 तथा W_2 तुल्याकारी सदिश समष्टियां हैं, तो T_1 तथा T_2 के एक ही अल्पिष्ठ बहुपद हैं।
- 3. यदि $W_1=W_2=V$ है, तब T_1 तथा T_2 समरूप (similar) हैं ।
- 4. यदि W_1 तथा W_2 तुल्याकारी हैं, तब T_1 तथा T_2 के एक ही अभिलक्षणिक बहुपद हैं।

A1 :

A2 2

2

A3 :

3

A4 :

4

Multiple Response

74 704074

Let V be the real vector space of real polynomials in one variable with degree less than or equal to 10 (including the zero polynomial). Let $T:V\to V$ be the linear map defined by T(p)=p', where p' denotes the derivative of p. Which of the following statements are correct?

- 1. rank(T) = 10.
- 2. determinant (T) = 0.
- 3. trace(T) = 0.
- 4. All the eigenvalues of T are equal to 0.

कोटि 10 या उससे कम कोटि (शून्य बहुपद को सिम्मितित करते हुए) वाले वास्तिविक एक चरीय बहुपदों की वास्तिविक सिदिश समिष्ट को V मार्ने। $T:V\to V$ को T(p)=p', द्वारा पिरिभाषित रेखीय फलनक मार्ने, जहां p' से आशय p का अवकलन है । निम्न वक्तव्यों में से कौन से सही हैं?

- 1. rank(T) = 10.
- 2. determinant (T) = 0.
- 3. trace(T) = 0.
- 4. T के सभी अभिलक्षणिक मान 0 के बराबर है।

A1 :

A2 2

2

A3 3

3

A4 4

4

Multiple Response

75 704075

Suppose A is a 5×5 block diagonal real matrix with diagonal blocks

 $\begin{pmatrix} e & 1 \\ 0 & e \end{pmatrix}, \qquad \begin{pmatrix} e & 1 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix}.$

4.75

0.00

Which of the following statements are true?

- The algebraic multiplicity of e in A is 5.
- 2. A is not diagonalisable.
- 3. The geometric multiplicity of e in A is 3.
- 4. The geometric multiplicity of e in A is 2.

मानें कि A एक 5×5 ब्लॉक विकर्ण आव्यूह है जिसके विकर्ण ब्लॉक

$$\begin{pmatrix} e & 1 \\ 0 & e \end{pmatrix}, \qquad \begin{pmatrix} e & 1 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix} \stackrel{*}{\xi} \mathsf{I}$$

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. A में e की बीजगणितीय बहुकता 5 है।
- A विकर्णनीय नहीं है।
- A में e की ज्यामितीय बहुकता 3 है।
- 4. A में e की ज्यामितीय बहुकता 2 है।

A1 :

A2 2

	2 A3 3 : 3		
	A4 4 :		
Multiple Response	4		
76 704076	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation satisfying $T^3 - 3T^2 = -2I$, where $I: \mathbb{R}^3 \to \mathbb{R}^3$ is the identity transformation. Which of the following statements are true?	4.75	0.00
	1. \mathbb{R}^3 must admit a basis \mathcal{B}_1 such that the matrix of T with respect to \mathcal{B}_1 is symmetric.		
	2. \mathbb{R}^3 must admit a basis \mathcal{B}_2 such that the matrix of T with respect to \mathcal{B}_2 is upper triangular.		
	3. \mathbb{R}^3 must contain a non-zero vector v such that $Tv = v$.		
	4. \mathbb{R}^3 must contain two linearly independent vectors v_1, v_2 such that $Tv_1 = v_1$ and $Tv_2 = v_2$.		
	मानें कि $T: \mathbb{R}^3 \to \mathbb{R}^3$ एक रैखिक रूपांतरण है जो $T^3 - 3T^2 = -2I$ को संतुष्ट करता है,		
	जहां $I: \mathbb{R}^3 \to \mathbb{R}^3$ तत्समक रूपांतरण है। निम्न में से कौन से वक्तव्य सत्य हैं?		
	$1.$ \mathbb{R}^3 के लिए ऐसा आधार \mathcal{B}_1 होना ही चाहिए कि \mathcal{B}_1 के सापेक्ष T का आव्यूह सममित हो।		
	2. \mathbb{R}^3 के लिए एक ऐसा आधार \mathcal{B}_2 होना ही चाहिए कि		
	\mathcal{B}_2 के सापेक्ष T का आव्यूह उपरि त्रिभुजीय हो ।		
	$3.$ \mathbb{R}^3 में ऐसा शून्येत्तर सदिश v होना ही चाहिए कि $Tv=v$ हो।		
	4. \mathbb{R}^3 मे दो रैखिकतः स्वतंत्र सिदश v_1, v_2 ऐसे होने ही चाहिए कि $Tv_1 = v_1$ तथा $Tv_2 = v_2$ हों।		
	A1 1		
	1		
	A2 2		
	2		
	A3 3 :		
	3		
	$\begin{vmatrix} A4 & 4 \\ \vdots & \end{vmatrix}$		
	4		
Multiple Response		4.75	0.00

Let V be an inner product space and let $v_1, v_2, v_3 \in V$ be an orthogonal set of vectors. Which of the following statements are true?

- 1. The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $v_2 + 3v_3$ can be extended to a basis of V.
- 2. The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $v_2 + 3v_3$ can be extended to an orthogonal basis of V.
- 3. The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $2v_1 + v_2 + 3v_3$ can be extended to a basis of V.
- 4. The vectors $v_1 + v_2 + 2v_3$, $2v_1 + v_2 + v_3$, $2v_1 + v_2 + 3v_3$ can be extended to a basis of V.

मानें कि V आंतर गुणन समष्टि है तथा $v_1, v_2, v_3 \in V$ सिदशों का एक लांबिक समुच्चय है। निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. सिंदिश $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $v_2 + 3v_3$ को V के एक आधार तक विस्तारित किया जा सकता है ।
- 2. सिंदिश $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $v_2 + 3v_3$ को V के एक लांबिक आधार तक विस्तारित किया जा सकता है ।
- 3. सिंदिश $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $2v_1 + v_2 + 3v_3$ को V के एक आधार तक विस्तारित किया जा सकता है ।
- 4. सिंदिश $v_1 + v_2 + 2v_3$, $2v_1 + v_2 + v_3$, $2v_1 + v_2 + 3v_3$ को V के एक आधार तक विस्तारित किया जा सकता है।

4.75

0.00

A1 :

1

A2 2

2

A3 3

3

4

 $\overset{A4}{:}~^{4}$

Multiple Response

78 704078

Consider the following quadratic forms over $\ensuremath{\mathbb{R}}$

(a)
$$6X^2 - 13XY + 6Y^2$$
,

(b)
$$X^2 - XY + 2Y^2$$
,

(c)
$$X^2 - XY - 2Y^2$$
.

Which of the following statements are true?

- 1. Quadratic forms (a) and (b) are equivalent.
- 2. Quadratic forms (a) and (c) are equivalent.
- 3. Quadratic form (b) is positive definite.
- 4. Quadratic form (c) is positive definite.

ℝ पर निम्न द्विघात रूपों पर विचार करें

(a)
$$6X^2 - 13XY + 6Y^2$$
,

(b)
$$X^2 - XY + 2Y^2$$
,

(c)
$$X^2 - XY - 2Y^2$$
.

निम्न वक्तव्यों में से कौन से सत्य हैं?

- द्विघात रूप (a) तथा (b) तुल्य है।
- 2. द्विघात रूप (a) तथा (c) तुल्य है।
- 3. द्विघात रूप (b) धनात्मक निश्चत है।
- 4. द्विघात रूप (c) धनात्मक निश्चत है।

A1 :

.

A2 2

.

A3 3

3

A4 4

4

Multiple Response

79 704079

Let $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ be the open unit disc and $\mathcal C$ the positively oriented boundary $\{|z|=1\}$. Fix a finite set $\{z_1,z_2,...,z_n\}\subseteq\mathbb{D}$ of distinct points and consider the polynomial

$$g(z) = (z - z_1)(z - z_2) \cdots (z - z_n)$$

of degree n. Let f be a holomorphic function in an open neighbourhood of $\overline{\mathbb{D}}$ and define

$$P(z) = \frac{1}{2\pi i} \int_{\zeta} f(\zeta) \frac{g(\zeta) - g(z)}{(\zeta - z)g(\zeta)} \ d\zeta.$$

Which of the following statements are true?

- 1. P is a polynomial of degree n
- 2. P is a polynomial of degree n-1
- 3. *P* is a rational function on \mathbb{C} with poles at $z_1, z_2, ..., z_n$
- 4. $P(z_j) = f(z_j)$ for j = 1, 2, ..., n.

4.75

0.00

मानें कि $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ एक विवृत्त एकक डिस्क है तथा C धनात्मकतः अभिविन्यस्त सीमा $\{|z|=1\}$ है । भिन्न बिंदुओं का परिमित समुच्चय $\{z_1,z_2,\dots,z_n\}\subseteq\mathbb{D}$ तय करें तथा कोटि n के निम्न बहुपद पर विचार करें

$$g(z) = (z - z_1)(z - z_2) \cdots (z - z_n).$$

मार्ने कि $\overline{\mathbb{D}}$ के विविक्त परिवेश में कोई पूर्ण सममितक (holomorphic) f है तथा परिभाषित करें

$$P(z) = \frac{1}{2\pi i} \int_{\mathcal{C}} f\left(\zeta\right) \frac{g(\zeta) - g(z)}{(\zeta - z)g(\zeta)} \ d\zeta.$$

निम्न वक्तव्यों में से कौन से सत्य हैं ?

- 1. P एक बहुपद है जिसकी कोटि n है।
- 2. P एक बहुपद है जिसकी कोटि n-1 है।
- 3. P एक परिमेय फलन है जो $\mathbb C$ पर है तथा उसके ध्रुव z_1, z_2, \dots, z_n हैं।
- $j=1,2,\ldots,n$ के लिए $P(z_j)=f\left(z_j\right)$ हैं।

A1 :

A2 2

2

A3 3

3

A4 4

Multiple Response

Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Consider the following statements.

- (a). $f: D \to D$ be a holomorphic function. Suppose α, β are distinct complex numbers in D such that $f(\alpha) = \alpha$ and $f(\beta) = \beta$. Then f(z) = z for all $z \in D$.
- (b). There does not exist a bijective holomorphic function from *D* to the set of all complex numbers whose imaginary part is positive.
- (c). $f: D \to D$ be a holomorphic function. Suppose $\alpha \in D$ be such that $f(\alpha) = \alpha$ and $f'(\alpha) = 1$. Then f(z) = z for all $z \in D$.

Which of the following options are true?

- (a), (b) and (c) are all true.
- 2. (a) is true.
- 3. Both (a) and (b) are false.
- 4. Both (a) and (c) are true.

मानें कि $D=\{z\in\mathbb{C}:|z|<1\}$ है। निम्न वक्तव्यों पर विचार करें

- (a). $f:D\to D$ एक वैश्लेषिक फलन (holomorphic function) मार्ने। α,β को D में भिन्न सम्मिश्र संख्यायें ऐसे मार्ने कि $f(\alpha)=\alpha$ तथा $f(\beta)=\beta$ है। तब सभी $z\in D$ के लिए f(z)=z है।
- (b). D से सभी सम्मिश्र संख्यायें, जिनके अधिकल्पित भाग धनात्मक हैं, के समुच्चय पर कोई एकाकी आच्छादी वैश्लेषिक फलन (holomorphic function) नहीं है।
- (c). $f:D\to D$ को वैश्लेषिक फलन (holomorphic function) मार्ने। मार्ने कि $\alpha\in D$ ऐसा है कि $f(\alpha)=\alpha$ तथा $f'(\alpha)=1$ हैं, तब सब $z\in D$ के लिए f(z)=z होता है।

निम्न वक्तव्यों में से कौन से सत्य हैं?

- (a), (b) तथा (c) सब सत्य हैं।
- 2. (a) सत्य है।
- (a) तथा (b) दोनों असत्य हैं।
- (a) तथा (c) दोनों सत्य हैं।

A1 1

A2 2

2

A3 :

3

A4 :

Multiple Response

81 704081

Let $f:\{z:|z|<1\}\to\{z:|z|\leq 1/2\}$ be a holomorphic function such that f(0)=0. Which of the following statements are true?

- 1. $|f(z)| \le |z|$ for all z in $\{z: |z| < 1\}$.
- 2. $|f(z)| \le \left|\frac{z}{z}\right|$ for all z in $\{z: |z| < 1\}$
- 3. $|f(z)| \le 1/2$ for all z in $\{z: |z| < 1\}$
- 4. It is possible that f(1/2) = 1/2.

मार्ने कि $f:\{z:|z|<1\} \to \{z:|z|\leq 1/2\}$ एक वैश्लेषिक फलन (holomorphic function) इस प्रकार है कि f(0)=0 है। निम्न वक्तव्यों में से कौन सा सत्य है?

- 1. $\{z: |z| < 1\}$ के सब z के लिए $|f(z)| \le |z|$ है।
- 2. $\{z:|z|<1\}$ के सब z के लिए $|f(z)|\leq \left|\frac{z}{2}\right|$ है।
- 3. $\{z: |z| < 1\}$ के सब z के लिए $|f(z)| \le 1/2$ है।
- 4. यह संभव है कि f(1/2) = 1/2 हो।

Jultinle Response	A1 1 1 A2 2 2 A3 3 3 A4 4 4 4		
Multiple Response 704082	Let $f(z)$ be an entire function on C. Which of the following statements are two?	4.75	0.00
	Let $f(z)$ be an entire function on \mathbb{C} . Which of the following statements are true?		
	1. $f(\bar{z})$ is an entire function.		
	2. $\overline{f(z)}$ is an entire function.		
	3. $\overline{f(\overline{z})}$ is an entire function.		
	4. $\overline{f(z)} + f(\overline{z})$ is an entire function.		
	$f(z)$ को $\mathbb C$ पर सर्वत्र वैश्लेषिक फलन मानें। निम्न वक्तव्यों में से कौन से सत्य हैं?		
	$1. \qquad f(ar{z})$ सर्वत्र वैश्लेषिक फलन है।		
	$2. \overline{f(z)}$ सर्वत्र वैश्लेषिक फलन है।		
	$f(\bar{z})$ सर्वत्र वैश्लेषिक फलन है।		
	$4. \overline{f(z)} + f(\bar{z})$ सर्वत्र वैश्लेषिक फलन है।		
	A1 1		
	:		
	A2 2		
	A3 3		
	3		
	A4 4		
	: 4		
Multiple Response		4.75	0.00
3 704083	Which of the following statements are correct?	4.75	0.00
	1. If G is a group of order 244, then G contains a unique subgroup of order 27.		
	2. If G is a group of order 1694, then G contains a unique subgroup of order 121.		
	3. There exists a group of order 154 which contains a unique subgroup of order 7.		
	4. There exists a group of order 121 which contains two subgroups of order 11.		

यदि G कोटि 244 का समूह है, तब G में कोटि 27 का एक अद्वितीय समूह है। यदि G कोटि 1694 का समूह है, तब G में कोटि 121 का एक अद्वितीय समूह है। 2. कोटि 154 का एक ऐसा समूह अस्तित्व में है जिसमें कोटि 7 का एक अद्वितीय समूह 3. है। कोटि 121 का एक ऐसा समूह अस्तित्व में है जिसमें कोटि 11 के दो उपसमूह हैं। A1 ₁ A2 ₂ 2 3 Multiple Response 704084 4.75 0.00 Let G be a group of order 2023. Which of the following statements are true? G is an Abelian group. 1. 2. G is a cyclic group. 3. G is a simple group. G is not a simple group. मानें कि G कोटि 2023 का एक समूह है। निम्न वक्तव्यों में से कौन से सत्य हैं? G एक आबेली समूह है। G एक चक्रीय समूह है। G एक सरल समूह है। G एक सरल समूह नहीं है। A1 ₁ A2 2 2 A3 3 4 Multiple Response

निम्न वक्तव्यों में से कौन से सही हैं?

85				
	704085	Let G_1 and G_2 be two groups and $\varphi: G_1 \to G_2$ be a surjective group homomorphism. Which of the following statements are true?	4.75	0.00
		1. If G_1 is cyclic then G_2 is cyclic.		
		2. If G_1 is Abelian then G_2 is Abelian.		
		3. If H is a subgroup of G_1 then $\varphi(H)$ is a subgroup of G_2 .		
		4. If N is a normal subgroup of G_1 then $\varphi(N)$ is a normal subgroup of G_2 .		
		मानें कि G_1 तथा G_2 दो समूह हैं तथा $\varphi: G_1 \to G_2$ एक आच्छादी समूह समकारिता है। निम्न वक्तव्यों में से कौन से सत्य हैं?		
		विम्न विक्तर्था म स कान स सत्य ह?		
		1. यदि G_1 चक्रीय है तो G_2 चक्रीय है।		
		2. यदि G_1 आबेली है तो G_2 आबेली है।		
		$3. \hspace{0.5cm} extit{H} \hspace{0.5cm}$ यदि $\hspace{0.5cm} G_1$ का $\hspace{0.5cm}$ का $\hspace{0.5cm} G_2$ का $\hspace{0.5cm}$ उपसमूह होगा।		
		$4.$ N यदि G_1 का प्रसामान्य उपसमूह है, तब $arphi(N)$ भी G_2 का प्रसामान्य उपसमूह		
		होगा।		
		A1 1		
		$A2_2$		
		A3 3		
		A4 ₄		
N (14)	ole Response	4		
Multip				
86	704086	Let $n > 1$ be a positive integer and S , the symmetric group on n symbols	4.75	0.00
86		Let $n \ge 1$ be a positive integer and S_n the symmetric group on n symbols. Let $\Delta = \{(g,g)\colon g \in S_n\}$. Which of the following statements are necessarily true?	4.75	0.00
86			4.75	0.00
86		Let $\Delta = \{(g,g): g \in S_n\}$. Which of the following statements are necessarily true?	4.75	0.00
86		Let $\Delta = \{(g,g): g \in S_n\}$. Which of the following statements are necessarily true? 1. The map $f: S_n \times S_n \to S_n$ given by $f(a,b) = ab$ is a group homomorphism.	4.75	0.00
86		Let $\Delta = \{(g,g) \colon g \in S_n\}$. Which of the following statements are necessarily true? 1. The map $f \colon S_n \times S_n \to S_n$ given by $f(a,b) = ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n \times S_n$.	4.75	0.00
86		Let $\Delta = \{(g,g): g \in S_n\}$. Which of the following statements are necessarily true? 1. The map $f: S_n \times S_n \to S_n$ given by $f(a,b) = ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n \times S_n$. 3. Δ is a normal subgroup of $S_n \times S_n$.	4.75	0.00
86		 Let Δ = {(g,g): g∈ S_n}. Which of the following statements are necessarily true? The map f: S_n × S_n → S_n given by f(a, b) = ab is a group homomorphism. Δ is a subgroup of S_n × S_n. Δ is a normal subgroup of S_n × S_n. Δ is a normal subgroup of S_n × S_n, if n is a prime number. 	4.75	0.00
86		Let $\Delta = \{(g,g)\colon g\in S_n\}$. Which of the following statements are necessarily true? 1. The map $f\colon S_n\times S_n\to S_n$ given by $f(a,b)=ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n\times S_n$. 3. Δ is a normal subgroup of $S_n\times S_n$. 4. Δ is a normal subgroup of $S_n\times S_n$, if n is a prime number. ## मार्ने कि $n\geq 1$ एक धनात्मक पूर्णांक है तथा n प्रतीकों पर सममित समूह S_n है। मार्ने	4.75	0.00
86		Let $\Delta = \{(g,g)\colon g\in S_n\}$. Which of the following statements are necessarily true? 1. The map $f\colon S_n\times S_n\to S_n$ given by $f(a,b)=ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n\times S_n$. 3. Δ is a normal subgroup of $S_n\times S_n$. 4. Δ is a normal subgroup of $S_n\times S_n$, if n is a prime number. ### #### ###########################	4.75	0.00
86		Let $\Delta = \{(g,g)\colon g\in S_n\}$. Which of the following statements are necessarily true? 1. The map $f\colon S_n\times S_n\to S_n$ given by $f(a,b)=ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n\times S_n$. 3. Δ is a normal subgroup of $S_n\times S_n$. 4. Δ is a normal subgroup of $S_n\times S_n$, if n is a prime number. Hidi A is a normal subgroup of A is a prime number.	4.75	0.00
86		Let $\Delta = \{(g,g)\colon g\in S_n\}$. Which of the following statements are necessarily true? 1. The map $f\colon S_n\times S_n\to S_n$ given by $f(a,b)=ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n\times S_n$. 3. Δ is a normal subgroup of $S_n\times S_n$. 4. Δ is a normal subgroup of $S_n\times S_n$, if n is a prime number. # A if A is a normal subgroup of A if A is a prime number. # A if A is a normal subgroup of A if A is a prime number. # A if A is a normal subgroup of A if A is a prime number. # A is a normal subgroup of A	4.75	0.00
86		Let $\Delta = \{(g,g)\colon g\in S_n\}$. Which of the following statements are necessarily true? 1. The map $f\colon S_n\times S_n\to S_n$ given by $f(a,b)=ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n\times S_n$. 3. Δ is a normal subgroup of $S_n\times S_n$. 4. Δ is a normal subgroup of $S_n\times S_n$, if n is a prime number. Hirif a	4.75	0.00
86		Let $\Delta=\{(g,g)\colon g\in S_n\}$. Which of the following statements are necessarily true? 1. The map $f\colon S_n\times S_n\to S_n$ given by $f(a,b)=ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n\times S_n$. 3. Δ is a normal subgroup of $S_n\times S_n$. 4. Δ is a normal subgroup of $S_n\times S_n$, if n is a prime number. Hiểi for $n\geq 1$ एक धलात्मक पूर्णांक है तथा n प्रतीकों पर सममित समूह S_n है। मालें for $\Delta=\{(g,g)\colon g\in S_n\}$ हो। लिम्ल वक्तर्व्यों में से किल का सत्य होना आवश्यक है? 1. $f(a,b)=ab$ द्वारा दिया गया फलल $f\colon S_n\times S_n\to S_n$ समूह समकारिता है। 2. $S_n\times S_n$ का Δ एक उपसमूह है। 3. $S_n\times S_n$ का Δ एक प्रसामाल्य उपसमूह होगा, यदि n एक अभाज्य संख्या है। 4. $S_n\times S_n$ का Δ एक प्रसामाल्य उपसमूह होगा, यदि n एक अभाज्य संख्या है।	4.75	0.00
86		Let $\Delta = \{(g,g): g \in S_n\}$. Which of the following statements are necessarily true? 1. The map $f: S_n \times S_n \to S_n$ given by $f(a,b) = ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n \times S_n$. 3. Δ is a normal subgroup of $S_n \times S_n$. 4. Δ is a normal subgroup of $S_n \times S_n$, if n is a prime number. Hiểi fà $n \geq 1$ एक धनात्मक पूर्णांक है तथा n प्रतीकों पर सममित समूह S_n है। मानें िक $\Delta = \{(g,g): g \in S_n\}$ हो। निम्न वक्तव्यों में से किन का सत्य होना आवश्यक है? 1. $f(a,b) = ab$ द्वारा दिया गया फलन $f: S_n \times S_n \to S_n$ समूह समकारिता है। 2. $S_n \times S_n$ का Δ एक उपसमूह है। 3. $S_n \times S_n$ का Δ एक प्रसामान्य उपसमूह होगा, यदि n एक अभाज्य संख्या है। 4. $S_n \times S_n$ का Δ एक प्रसामान्य उपसमूह होगा, यदि n एक अभाज्य संख्या है।	4.75	0.00
86		Let $\Delta=\{(g,g)\colon g\in S_n\}$. Which of the following statements are necessarily true? 1. The map $f\colon S_n\times S_n\to S_n$ given by $f(a,b)=ab$ is a group homomorphism. 2. Δ is a subgroup of $S_n\times S_n$. 3. Δ is a normal subgroup of $S_n\times S_n$. 4. Δ is a normal subgroup of $S_n\times S_n$, if n is a prime number. Hiểi for $n\geq 1$ एक धलात्मक पूर्णांक है तथा n प्रतीकों पर सममित समूह S_n है। मालें for $\Delta=\{(g,g)\colon g\in S_n\}$ हो। लिम्ल वक्तर्व्यों में से किल का सत्य होना आवश्यक है? 1. $f(a,b)=ab$ द्वारा दिया गया फलल $f\colon S_n\times S_n\to S_n$ समूह समकारिता है। 2. $S_n\times S_n$ का Δ एक उपसमूह है। 3. $S_n\times S_n$ का Δ एक प्रसामाल्य उपसमूह होगा, यदि n एक अभाज्य संख्या है। 4. $S_n\times S_n$ का Δ एक प्रसामाल्य उपसमूह होगा, यदि n एक अभाज्य संख्या है।	4.75	0.00

	\parallel A3 $_3$		
	$A4_4$		
Multiple Response	4		
7 704087	Which of the following are maximal ideals of $\mathbb{Z}[X]$?	4.75	0.00
	 Ideal generated by 2 and (1 + X²) Ideal generated by 2 and (1 + X + X²) Ideal generated by 3 and (1 + X²) Ideal generated by 3 and (1 + X + X²) 		
	निम्न में से कौन से $\mathbb{Z}[X]$ की विशिष्ठ गुणजावली (maximal idal) हैं?		
	$1. 2$ तथा $(1+X^2)$ द्वारा जिनत गुणजावली		
	2. 2 तथा $(1+X+X^2)$ द्वारा जिनत गुणजावली		
	3. 3 तथा $(1+X^2)$ द्वारा जिनत गुणजावली		
	4 . 3π था $(1 + X + X^2)$ द्वारा जिनत गुणजावली		
	A1 1		
	$\begin{bmatrix} A2 \\ \cdot \end{bmatrix}$ 2		
	A3 3		
	$A4_4$		
	: 4		
Multiple Response			
704088	Let E be a finite algebraic Galois extension of F with Galois group G . Which of the following statements are true?	4.75	0.00
	1. There is an intermediate field K with $K \neq F$ and $K \neq E$ such that K is a Galois		
	extension of F .		
	extension of <i>F</i> . 2. If every proper intermediate field <i>K</i> is a Galois extension of <i>F</i> then <i>G</i> is Abelian.		
	2. If every proper intermediate field K is a Galois extension of F then G is Abelian.		
	 If every proper intermediate field K is a Galois extension of F then G is Abelian. If E has exactly three intermediate fields including F and E then G is Abelian. 		
	 If every proper intermediate field K is a Galois extension of F then G is Abelian. If E has exactly three intermediate fields including F and E then G is Abelian. If [E: F] = 99 then every intermediate field is a Galois extension of F 		
	 If every proper intermediate field K is a Galois extension of F then G is Abelian. If E has exactly three intermediate fields including F and E then G is Abelian. If [E:F] = 99 then every intermediate field is a Galois extension of F E को F का गाल्या समूह G के साथ परिमित बीजगणतीय गाल्या विस्तार मानें। निम्त 		
	 If every proper intermediate field K is a Galois extension of F then G is Abelian. If E has exactly three intermediate fields including F and E then G is Abelian. If [E:F] = 99 then every intermediate field is a Galois extension of F E को F का गाल्या समूह G के साथ परिमित बीजगणतीय गाल्या विस्तार मानें। निम्न वक्तव्यों में से कौन से सत्य हैं? कोई एक ऐसा माध्यिमक क्षेत्र K है जिसके लिए K≠F तथा K≠E है एवं वह F 		
	 If every proper intermediate field K is a Galois extension of F then G is Abelian. If E has exactly three intermediate fields including F and E then G is Abelian. If [E:F] = 99 then every intermediate field is a Galois extension of F E को F का गाल्या समूह G के साथ परिमित बीजगणतीय गाल्या यिस्तार मानें। निम्न यक्तर्यों में से कौन से सत्य हैं? कोई एक ऐसा माध्यमिक क्षेत्र K है जिसके लिए K≠F तथा K≠E है एवं वह F का गाल्या यिस्तार है। 		

		A1 : 1			
		1			
		A2 2			
		: 2			
		A3 3			
		: 3			
		3			
		A4 :			
		4			
Multi	ple Response				
89	704089	Wh	ich of the following statements are correct ?	4.75	0.00
		1.	The set of open right half-planes is a basis for the usual (Euclidean) topology on \mathbb{R}^2 .		
		2.	The set of lines parallel to Y-axis is a basis for the dictionary order topology on		
			\mathbb{R}^2 .		
		3.	The set of open rectangles is a basis for the usual (Euclidean) topology on \mathbb{R}^2 .		
		4.	The set of line segments (without end points) parallel to Y-axis is a basis for the dictionary order topology on \mathbb{R}^2 .		
		-	न कथनों में से कौन से सत्य हैं ?		
		1.	विवृत दक्षिण अर्ध तलों का समुच्चय \mathbb{R}^2 पर साधारण (यूक्लिडीय) संस्थिति के		
			लिए एक आधार है।		
		2.	Y -अक्ष के समांतर रेखाओं का समुच्चय \mathbb{R}^2 पर डिक्शनरी ऑर्डर संस्थिति के लिए		
			एक आधार है।		
		3.	विवृत्त आयतों का समुच्चय \mathbb{R}^2 पर साधारण (यूक्लिडीय) संस्थिति के लिए एक		
			आधार है।		
		4.	Y -अक्ष के समांतर रेखा खंडो का समुच्चय (बिना अंत्य बिंदुओं के) \mathbb{R}^2 पर		
			डिक्शनरी ऑर्डर संस्थिति के लिए एक आधार है।		
		A1 1			
		: 1			
		A2 2			
		2			
		A3 3			
		3			
		A4 :			
		4			
	ple Response				
90	704090			4.75	0.00

Let $X = \prod_{n=1}^{\infty} [0,1]$, that is, the space of sequences $\{x_n\}_{n\geq 1}$ with $x_n \in [0,1]$, $n \geq 1$. Define the metric $d: X \times X \to [0,\infty)$ by

$$d(\{x_n\}_{n\geq 1}, \{y_n\}_{n\geq 1}) = \sup_{n\geq 1} \frac{|x_n - y_n|}{2^n}.$$

Which of the following statements are true?

- 1. The metric topology on X is finer than the product topology on X.
- 2. The metric topology on X is coarser than the product topology on X.
- 3. The metric topology on X is same as the product topology on X.
- 4. The metric topology on *X* and the product topology on *X* are not comparable.

मानें कि $X=\prod_{n=1}^\infty[0,1]$, अर्थात अनुक्रमों $\{x_n\}_{n\geq 1}$ जहां $x_n\in[0,1], n\geq 1$, की समष्टि है। दूरीक $d\colon X\times X\to[0,\infty)$ निम्न द्वारा परिभाषित करें

$$d(\{x_n\}_{n\geq 1}, \{y_n\}_{n\geq 1}) = \sup_{n\geq 1} \frac{|x_n - y_n|}{2^n}.$$

निम्न वक्यव्यों में से कौन से सत्य हैं?

- 1. X पर दूरीक संस्थिति, X पर गुणन संस्थिति से सूक्ष्तमतर है।
- 2. X पर दूरीक संस्थिति, X पर गुणन संस्थिति की तुलना में अधिक स्थूल है।
- 3. X पर दूरीक संस्थिति, X पर गुणन संस्थिति के बराबर है।
- 4. X पर दूरीक संस्थिति, X पर गुणन संस्थिति के तुल्य नहीं है।

A1 1

1

A2 2

2

A3 .

3

A4

:

Multiple Response

91 704091

Let $f \in \mathcal{C}^1(\mathbb{R})$ be bounded. Let us consider the initial-value problem

(P)
$$\begin{cases} x'(t) = f(x(t)), t > 0, \\ x(0) = 0. \end{cases}$$

4.75

0.00

Which of the following statements are true?

- 1. (P) has solution(s) defined for all t > 0.
- 2. (P) has a unique solution.
- 3. (P) has infinitely many solutions.
- 4. The solution(s) of (P) is/are Lipschitz.

(P)
$$\begin{cases} x'(t) = f(x(t)), t > 0, \\ x(0) = 0. \end{cases}$$

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. (P) का सभी t > 0 के लिए हल परिभाषित हैं।
- 2. (P) का अद्वितीय हल है।
- 3. (P) के अनंत हल हैं।
- 4. (P) का/ के हल लिपशिट्ज है/हैं।

A1 : 1

1

A2 2

2

A3 ₃

3

A4 2

1

Multiple Response

92 704092

Consider the following initial value problem (IVP),

$$\frac{du}{dt} = t^2 u^{\frac{1}{5}}, \quad u(0) = 0.$$

Which of the following statements are correct?

- 1. The function $g(t, u) = t^2 u^{\frac{1}{5}}$ does not satisfy the Lipschitz's condition with respect to u in any neighbourhood of u = 0.
- 2. There is no solution for the IVP.
- 3. There exist more than one solution for the IVP.
- 4. The function $g(t,u)=t^2u^{\frac{1}{5}}$ satisfies the Lipschitz's condition with respect to u in some neighbourhood of u=0 and hence there exists a unique solution for the IVP

निम्न प्रारंभिक मान समस्या पर विचार करें

$$\frac{du}{dt} = t^2 u^{\frac{1}{5}}, \quad u(0) = 0.$$

4.75

0.00

निम्न वक्तव्यों में से कौन से सही हैं ?

- 1. u=0 के किसी भी प्रतिवेश में u के सापेक्ष फलन $g(t,u)=t^2u^{\frac{1}{5}}$ लिपशिट्ज प्रतिबंध को संतुष्ट नहीं करता।
- 2. प्रांरभिक मान समस्या का कोई हल नहीं है।
- प्रारंभिक मान समस्या के लिए एक से अधिक हल हैं।
- 4. u=0 के किसी प्रतिवेश में u के सापेक्ष फलन $g(t,u)=t^2u^{\frac{1}{5}}$ लिपशिट्ज प्रतिबंध को संतुष्ट करता है तथा इसलिए प्रारंभिक मान समस्या के लिए एक अद्वितीय हल है।

	A1 : 1		
	1		
	A2 ₂		
	2		
	A3 3 :		
	3		
	A4 4 :		
Maria B	4		
Multiple Response	Let us consider the following two initial value problems	4.75	0.00
	(P) $\begin{cases} x'(t) = \sqrt{x(t)}, \ t > 0, \\ x(0) = 0, \end{cases}$		
	and $(x(0) = 0)$		
	(Q) $\begin{cases} y'(t) = -\sqrt{y(t)}, t > 0, \\ y(0) = 0. \end{cases}$		
	Which of the following statements are true?		
	 (P) has a unique solution in [0, ∞). (Q) has a unique solution in [0, ∞). (P) has infinitely many solutions in [0, ∞). (Q) has infinitely many solutions in [0, ∞). 		
	निम्न दो प्रारंभिक मान समस्याओं पर विचार करें		
	$(P) \begin{cases} x'(t) = \sqrt{x(t)}, t > 0, \\ x(0) = 0, \end{cases}$		
	तथा		
	(Q) $\begin{cases} y'(t) = -\sqrt{y(t)}, t > 0, \\ y(0) = 0. \end{cases}$		
	निम्न वक्तव्यों में से कौन से सत्य हैं?		
	 (P) का [0,∞) में अद्वितीय हल है। 		
	 (Q) का [0,∞) में अद्वितीय हल है। 		
	 (P) के [0,∞) में अनंत हल हैं। 		
	4. (Q) के $[0,∞)$ में अनंत हल हैं।		
	A1 1		
	1		
	A2 2		
	A3 3		
	3		

	A4 4		
	4		
Iultiple Response		1.55	
1 704094	Let $u: \mathbb{R}^2 \to \mathbb{R}$ be the solution to the Cauchy problem:	4.75	0.00
	$\begin{cases} \partial_x u + 2\partial_y u = 0 & \text{for } (x, y) \in \mathbb{R}^2, \\ u(x, y) = \sin(x) & \text{for } y = 3x + 1, x \in \mathbb{R}. \end{cases}$		
	Let $v: \mathbb{R}^2 \to \mathbb{R}$ be the solution to the Cauchy problem:		
	$\begin{cases} \partial_x v + 2\partial_y v &= 0 & \text{for } (x, y) \in \mathbb{R}^2, \\ v(x, 0) &= \sin(x) & \text{for } x \in \mathbb{R}. \end{cases}$		
	Let $S = [0,1] \times [0,1]$.		
	Which of the following statements are true?		
	 u changes sign in the interior of S. u(x,y) = v(x,y) along a line in S. v changes sign in the interior of S. v v anishes along a line in S. 		
	मार्ने कि $u:\mathbb{R}^2 o\mathbb{R}$ निम्न कौशी समस्या का हल है:		
	$\left\{egin{array}{ll} \partial_x u + 2\partial_y u &= 0 & (x,y) \in \mathbb{R}^2 \ \hbox{ के } \hbox{ लिए }, \ u(x,y) &= \sin(x) & y = 3x + 1, x \in \mathbb{R} \ \hbox{ के } \hbox{ लिए }. \end{array} ight.$		
	मानें कि $v:\mathbb{R}^2 o\mathbb{R}$ निम्न कॉशी समस्या का हल है:		
	$\begin{cases} \partial_x v + 2\partial_y v &= 0, & (x, y) \in \mathbb{R}^2, \\ v(x, 0) &= \sin(x), & x \in \mathbb{R}. \end{cases}$		
	मानें की $\mathcal{S}=[0,1] imes[0,1]$ हो।		
	निम्न वक्तव्यों में से कौन से सत्य हैं?		
	$1. u$ अपना चिह्न $\mathcal S$ के अंतः में परिवर्तित करता है।		
	2. $\mathcal S$ के अन्दर एक रेखा पर $u(x,y)=v(x,y)$ होता है।		
	$3. v$ अपना चिह्न $\mathcal S$ के अंतः में परिवर्तित करता है।		
	4. $\mathcal S$ के अन्दर एक रेखा पर v लुप्त हो जाता है।		
	A1 1 :		
	1		
	A2 2		
	A3 3 :		
	3		
	A4 4 :		
ultiple Response	4		
704095		4.75	0.00

Let u = u(x, y) be the solution to the following Cauchy problem

$$u_x + u_y = e^u$$
 for $(x, y) \in \mathbb{R} \times \left(0, \frac{1}{e}\right)$ and $u(x, 0) = 1$ for $x \in \mathbb{R}$.

Which of the following statements are true?

1.
$$u(\frac{1}{2e}, \frac{1}{2e}) = 1$$

2.
$$u_x(\frac{1}{2e},\frac{1}{2e})=0$$

3.
$$u_y(\frac{1}{4e}, \frac{1}{4e}) = \log 4$$

4.
$$u_y(0, \frac{1}{4e}) = \frac{4e}{3}$$

मार्ने कि u=u(x,y) निम्न कौशी समस्या का हल है:

$$(x,y)\in\mathbb{R} imes \left(0,rac{1}{e}
ight)$$
 के लिए $u_x+u_y=e^u$ तथा $x\in\mathbb{R}$ के लिए $u(x,0)=1$ है।

निम्न वक्तव्यों में से कौन से सत्य हैं?

1.
$$u(\frac{1}{2e}, \frac{1}{2e}) = 1$$

$$2. u_x(\frac{1}{2e},\frac{1}{2e})=0$$

3.
$$u_y(\frac{1}{4e}, \frac{1}{4e}) = \log 4$$

4.
$$u_y(0, \frac{1}{4e}) = \frac{4e}{3}$$

Multiple Response

96 704096

Consider the following two sequences $\{a_n\}$ and $\{b_n\}$ given by

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n},$$

 $b_n = \frac{1}{n}.$

Which of the following statements are true?

- 1. $\{a_n\}$ converges to log 2, and has the same convergence rate as the sequence $\{b_n\}$
- 2. $\{a_n\}$ converges to log 4, and has the same convergence rate as the sequence $\{b_n\}$.
- 3. $\{a_n\}$ converges to log 2, but does not have the same convergence rate as the sequence $\{b_n\}$.
- 4. $\{a_n\}$ does not converge.

निम्न द्वारा दिये गए दो अनुक्रमों $\{a_n\}$ तथा $\{b_n\}$ पर विचार करें

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n},$$

 $b_n = \frac{1}{n}.$

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. $\{a_n\}$ अभिसरित हो जाता है $\log 2$ में, तथा उतनी ही अभिसरण दर से जितनी अनुक्रम $\{b_n\}$ की है ।
- {a_n} अभिसरित हो जाता है log 4 में, तथा उतनी ही अभिसरण दर से जितनी अनुक्रम {b_n} की है।
- 3. $\{a_n\}$ अभिसरित हो जाता है $\log 2$ में, लेकिन अभिसरण दर अनुक्रम $\{b_n\}$ जितनी नहीं है।
- 4. $\{a_n\}$ अभिसरित नहीं होता है।

Multiple Response

97 704097

Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \frac{1}{4} + x - x^2$. Given $a \in \mathbb{R}$, let us define the sequence $\{x_n\}$ by $x_0 = a$ and $x_n = f(x_{n-1})$ for $n \ge 1$.

Which of the following statements are true?

- 1. If a = 0, then the sequence $\{x_n\}$ converges to $\frac{1}{2}$.
- 2. If a = 0, then the sequence $\{x_n\}$ converges to $-\frac{1}{2}$.
- 3. The sequence $\{x_n\}$ converges for every $a \in \left(-\frac{1}{2},\frac{3}{2}\right)$, and it converges to $\frac{1}{2}$.
- 4. If a = 0, then the sequence $\{x_n\}$ does not converge.

 $f:\mathbb{R}\to\mathbb{R}$ को $f(x)=rac{1}{4}+x-x^2$ द्वारा परिभाषित करें। किसी भी $a\in\mathbb{R}$ के लिए अनुक्रम $\{x_n\}$ को ऐसे परिभाषित करें कि $x_0=a$ तथा $n\geq 1$ के लिए $x_n=f(x_{n-1})$ है।

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. यदि a=0 है, तब अनुक्रम $\{x_n\}$ का अभिसरण $\frac{1}{2}$ में होता है।
- 2. यदि a=0 है, तब अनुक्रम $\{x_n\}$ का अभिसरण $-\frac{1}{2}$ में होता है ।
- 3. सभी $a \in \left(-\frac{1}{2}, \frac{3}{2}\right)$ के लिए अनुक्रम $\{x_n\}$ का अभिसरण होता है तथा यह $\frac{1}{2}$ में अभिसरित होता है।
- 4. यदि a=0 है, तब अनुक्रम $\{x_n\}$ अभिसरित नहीं होता है।

A1 : 1

		\parallel A2 $_2$		
		A3 3		
		3		
		A4 4		
		· 4		
Multi	ple Response			
98	704098		4.75	0.00
		Suppose $y(x)$ is an extremal of the following functional $J(y(x)) = \int_0^1 (y(x)^2 - 4y(x)y'(x) + 4y'(x)^2) dx$		
		subject to $y(0) = 1$ and $y'(0) = 1/2$. Which of the following statements are true?		
		1. y is a convex function.		
		2. y is a concave function.		
		3. $y(x_1 + x_2) = y(x_1)y(x_2)$ for all x_1, x_2 in [0,1].		
		4. $y(x_1x_2) = y(x_1) + y(x_2)$ for all x_1, x_2 [0,1].		
		मार्ने कि $y(x)$ निम्न फलनक का चरम है		
		$J(y(x)) = \int_0^1 (y(x)^2 - 4y(x)y'(x) + 4y'(x)^2) dx$		
		इस प्रतिबंध के साथ कि $y(0) = 1$ तथा $y'(0) = 1/2$.		
		निम्न वक्तव्यों में से कौन से सत्य हैं?		
		1. y अवमुखी फलन है।		
		2. y उन्मुख फलन है।		
		$y(x_1+x_2)=y(x_1)y(x_2)$ सभी x_1,x_2 [0,1] के लिए।		
		4. $y(x_1x_2) = y(x_1) + y(x_2)$ सभी x_1, x_2 [0,1] के लिए।		
		A1		
		A1 ₁ :		
		1		
		A2 2		
		2		
		A3 3		
		3		
M 1/1	-1- D	4		
Mult1 _. 99	ple Response 704099		4.75	0.00

Let y(x) and z(x) be the stationary functions (extremals) of the variational problem

$$J(y(x), z(x)) = \int_0^1 [(y')^2 + (z')^2 + y'z']dx$$

subject to
$$y(0) = 1$$
, $y(1) = 0$, $z(0) = -1$, $z(1) = 2$.

Which of the following statements are correct?

- 1. z(x) + 3y(x) = 2 for $x \in [0,1]$.
- 2. 3z(x) + y(x) = 2 for $x \in [0,1]$.
- 3. y(x) + z(x) = 2x for $x \in [0,1]$.
- 4. y(x) + z(x) = x for $x \in [0,1]$.

मार्ने कि y(x) तथा z(x) निम्न विचरणात्मक समस्या के स्तब्ध फलन (चरम) हैं

$$J(y(x), z(x)) = \int_0^1 [(y')^2 + (z')^2 + y'z']dx$$

इस प्रतिबंध के साथ कि y(0) = 1, y(1) = 0, z(0) = -1, z(1) = 2 हैं।

निम्न वक्तव्यों में से कौन से सही हैं?

- 1. $x \in [0,1]$ के लिए z(x) + 3y(x) = 2
- 2. $x \in [0,1]$ के लिए 3z(x) + y(x) = 2
- 3. $x \in [0,1]$ के लिए y(x) + z(x) = 2x
- 4. $x \in [0,1]$ के लिए y(x) + z(x) = x

A1

1

A2 2

2

A3 3

3

A4 . 4

2

Multiple Response

100 704100

Let $\lambda_1 < \lambda_2$ be two real characteristic numbers for the following homogeneous integral equation:

$$\varphi(x) = \lambda \int_0^{2\pi} \sin(x+t) \varphi(t) dt;$$

and let $\mu_1 < \mu_2$ be two real characteristic numbers for the following homogeneous integral equation:

$$\psi(x) = \mu \int_0^{\pi} \cos(x+t) \, \psi(t) \, \mathrm{d}t.$$

Which of the following statements are true?

- 1. $\mu_1 < \lambda_1 < \lambda_2 < \mu_2$
- $2. \qquad \lambda_1 < \mu_1 < \mu_2 < \lambda_2$
- 3. $|\mu_1 \lambda_1| = |\mu_2 \lambda_2|$ 4. $|\mu_1 - \lambda_1| = 2|\mu_2 - \lambda_2|$

$$\varphi(x) = \lambda \int_0^{2\pi} \sin(x+t) \, \varphi(t) \, dt;$$

तथा मानें कि $\mu_1 < \mu_2$ निम्नलिखित समघात समाकल समीकरण के लिए दो वास्तिवक अभिलक्षणिक संख्यायें हैं

$$\psi(x) = \mu \int_0^{\pi} \cos(x+t) \, \psi(t) \, \mathrm{d}t.$$

निम्न वक्तव्यों में से कौन से सत्य हैं?

- $\mu_1 < \lambda_1 < \lambda_2 < \mu_2$
- $\lambda_1 < \mu_1 < \mu_2 < \lambda_2$
- 3. $|\mu_1 \lambda_1| = |\mu_2 \lambda_2|$ 4. $|\mu_1 \lambda_1| = 2|\mu_2 \lambda_2|$

 $^{A1}_{1}$

A2 2

A4 4

Multiple Response

101 704101

Let $K \in \mathcal{C}([0,1] \times [0,1])$ satisfy |K(x,y)| < 1 for all $x,y \in [0,1]$. For every $g \in \mathcal{C}[0,1]$, let us consider the integral equation

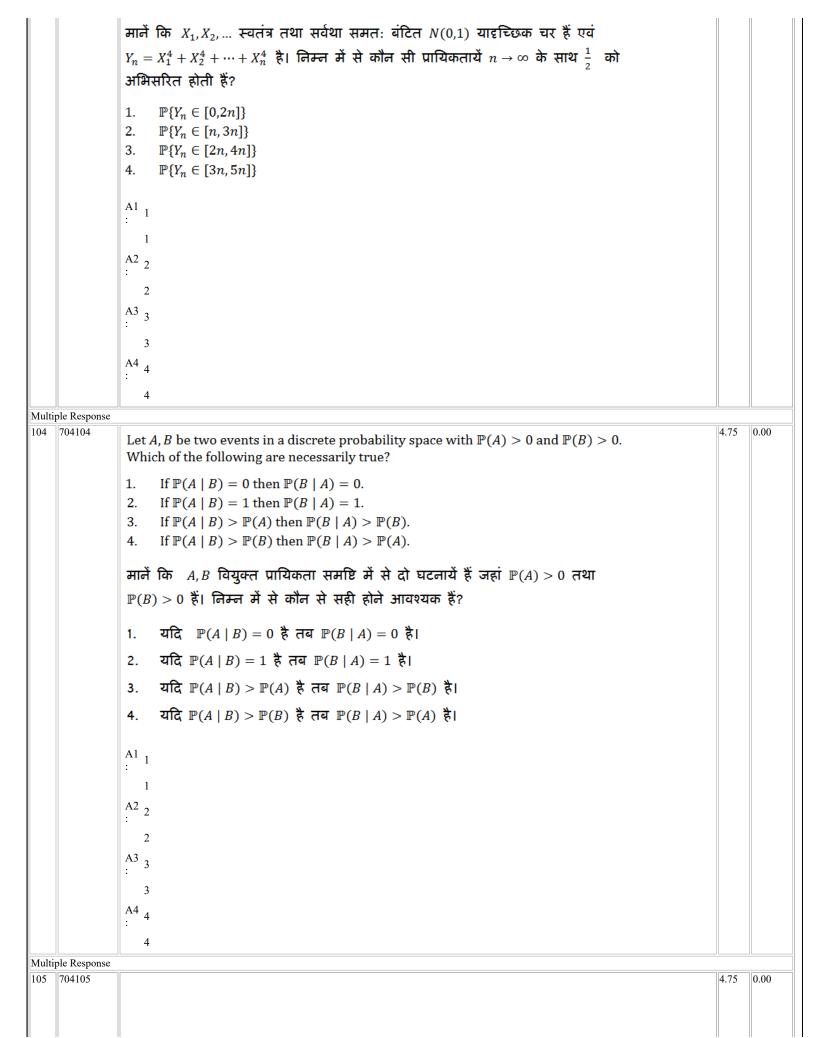
4.75

0.00

$$(P_g)$$
 $f(x) + \int_0^1 K(x, y) f(y) dy = g(x)$, for all $x \in [0,1]$.

Which of the following statements are true?

- there exists a $g \in C[0,1]$ for which (P_g) has no solution in C[0,1].
- 2. (P_g) has a solution in C[0,1] for infinitely many $g \in C[0,1]$.
- the solution of (P_g) in C[0,1] is unique if $g \in C^1[0,1]$.
- there exists a $g \in C[0,1]$ for which (P_g) has infinitely many solutions in C[0,1].


मानें कि $K \in C([0,1] \times [0,1])$ सब $x,y \in [0,1]$ के लिए |K(x,y)| < 1 को संतुष्ट करता है। प्रत्येक $g \in C[0,1]$ के लिए, निम्न समाकल समीकरण पर विचार करें

$$(P_g)$$
 $f(x) + \int_0^1 K(x, y) f(y) dy = g(x)$, सभी $x \in [0, 1]$ के लिए।

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. ऐसे $g \in C[0,1]$ का अस्तित्व है जिसके लिए C[0,1] में (P_a) का कोई हल नहीं है।
- 2. अनंततः बह् $g \in C[0,1]$ के लिए (P_q) का C[0,1] में हल है।
- 3. यदि $g \in C^1[0,1]$ है, तब (P_q) का C[0,1] में हल अद्वितीय है।
- 4. ऐसा $g \in C[0,1]$ का अस्तित्व है जिसके लिए C[0,1] में (P_a) के अनंत हल हैं।

II I	l I		II	
		$\begin{bmatrix} A1 \\ \vdots \end{bmatrix}$		
		1		
		A2 2		
		$: ^2$		
		2		
		A_{3}		
		·		
		A4 ₄ :		
		4		
Multir	ole Response			
	704102	A i	4.75	0.00
		A point particle having unit mass is moving in x , y plane having the Lagrangian as follows		
		$L = \dot{x}\dot{y} - 2x^2 - 2y^2.$		
		What are the possible values of p_r (conjugate momentum to radial coordinate in plane polar coordinate)?		
		$\dot{1}$. \dot{r}		
		2. $\dot{r}\sin 2\theta + r\dot{\theta}\cos 2\theta$		
		3. $r \sin \theta + r \theta \cos \theta$		
		4. $2\dot{r}\sin\theta + r\dot{\theta}\cos\theta$		
		इकाई द्रव्यमान वाले, x-y तल में गतिमान एक बिंदु कण का लग्रांजी (Lagrangian)		
		निम्नवत है		
		$L = \dot{x}\dot{y} - 2x^2 - 2y^2.$		
		p_r (समतल धुवी निर्देशांक में संयुग्मी संवेग से त्रिज्य निर्देशांक) के सम्भव मान क्या हैं?		
		$$ 1. \dot{r}		
		2. $\dot{r}\sin 2\theta + r\dot{\theta}\cos 2\theta$		
		3. $\dot{r}\sin\theta + r\dot{\theta}\cos\theta$		
		4. $2\dot{r}\sin\theta + r\dot{\theta}\cos\theta$		
		4. $2T\sin\theta + T\theta\cos\theta$		
		A1 1		
		1		
		$A2_2$		
		2		
		$\begin{bmatrix} A3 \\ . \end{bmatrix}$		
		3		
		A4 4		
		4		
Multir	ole Response			
	704103	Suppose $X_1, X_2,$ are independent and identically distributed $N(0,1)$ random	4.75	0.00
		variables and $Y_n = X_1^4 + X_2^4 + \dots + X_n^4$. Which of the following probabilities converge		
		to $\frac{1}{2}$ as $n \to \infty$?		
		1. $\mathbb{P}\{Y_n \in [0,2n]\}$		
		2. $\mathbb{P}\{Y_n \in [n, 3n]\}$ 3. $\mathbb{P}\{Y_n \in [2n, 4n]\}$		
		C 11 12 13		
		4. $\mathbb{P}\{Y_n \in [3n, 5n]\}$		

Let $n \geq 2$ be a positive integer. Consider a Markov chain on the state space $\{1,2,\cdots,n\}$ with a given transition probability matrix P. Let I_n denote the identity matrix of order n. Which of the following statements are necessarily true?

- 1. At least one state is recurrent.
- 2. At least one state is transient.
- 3. $-\frac{1}{3}I_n + \frac{4}{3}P$ is also a transition probability matrix of some Markov chain.
- 4. 5 is an eigenvalue of $I_n + 3P + P^2$.

मानें कि $n \geq 2$ एक धनात्मक पूर्णांक संख्या है। अवस्था समिष्ट $\{1,2,\cdots,n\}$ पर दिये गये संक्रमण प्रायिकता आव्यूह P वाली मार्कोव श्रृंखला पर विचार करें। मार्ने कि I_n कोटि n का तत्समक आव्यूह दर्शाता है। निम्न वक्तव्यों में से कौन से सत्य होने आवश्यक हैं?

- कम से कम एक अवस्था पुनरावर्ती है।
- 2. कम से कम एक अवस्था क्षणिक है।
- 3. $-\frac{1}{3}I_n + \frac{4}{3}P$ किसी मार्कोव श्रृंखला का संक्रमण पर्गियकता आव्यूह भी है।
- 4. $I_n + 3P + P^2$ का एक अभिलक्षणिक मान 5 है।

A1 1

1

A2 2

2

A3 3

3 A4 ₄

:

Multiple Response

106 704106

Let X_i , for $i=1,2,...,2n, n \ge 1$, be independent random variables each distributed as N(0,1). Which of the following statements are correct?

1.
$$(X_1 + \dots + X_n - X_{n+1} - \dots - X_{2n})/2n \sim N(0,2)$$

2.
$$(X_1 - X_2)^2 + (X_3 - X_4)^2 + \dots + (X_{2n-1} - X_{2n})^2 \sim 2\chi_n^2$$

3.
$$E[max(|X_1|,|X_{n+1}|)] = \frac{2}{\sqrt{\pi}}$$

4.
$$E[max(|X_1|,|X_{n+1}|)] = \frac{4}{\sqrt{\pi}}$$

मानें कि $i=1,2,\dots,2n,\,n\geq 1$ के लिए X_i स्वतंत्र याद्दच्छिक चर हैं जहां प्रत्येक N(0,1) के अनुसार बंटित है। निम्न वक्तव्यों में से कौन से सत्य हैं?

1.
$$(X_1 + \cdots + X_n - X_{n+1} - \cdots - X_{2n})/2n \sim N(0,2)$$

2.
$$(X_1 - X_2)^2 + (X_3 - X_4)^2 + \dots + (X_{2n-1} - X_{2n})^2 \sim 2\chi_n^2$$

3.
$$E[max(|X_1|,|X_{n+1}|)] = \frac{2}{\sqrt{\pi}}$$

4.
$$E[max(|X_1|,|X_{n+1}|)] = \frac{4}{\sqrt{\pi}}$$

A1 : 4.75 0.00

	1 A2 2		
	·		
	2 A3 3		
	i ·		
	3 A4 4		
	A 4		
	4		
ultiple Response	;	4.75	0.00
, , , , , , , , , , , , , , , , , , , ,	Let a continuous random variable X follow $Uniform(-1,1)$. Define $Y=X^2$. Which of the following are NOT true for X and Y ?	1.75	0.00
	They are independent and uncorrelated.		
	 They are independent but correlated. They are not independent but correlated. 		
	4. They are neither independent nor correlated.		
	मानें कि कोई संतत याद्दिछक चर X $Uniform(-1,1)$ का अनुसरण करता है।		
	परिभाषित करें $Y=X^2$. निम्न में से कौन से X तथा Y के लिए सत्य नहीं हैं?		
	1. वे स्वतंत्र तथा असहसंबंधित हैं।		
	2. वे स्वतंत्र हैं परन्तु सहसंबंधित नहीं हैं।		
	3. वे स्वतंत्र नहीं हैं परंतु सहसंबंधित हैं।		
	4. वे न तो स्वतंत्र हैं न सहसंबधित हैं।		
	A1 1		
	1		
	A2 2		
	$A3_3$		
	3		
	A4 4 :		
	4		
ultiple Response		4.75	0.00
04100	Let X and Y be independent Poisson random variables with parameters 2 and 3, respectively. Which of the following statements are correct?	4.73	0.00
	1. $Var(X X+Y=2)=\frac{12}{25}$		
	2. $E\left(\frac{2}{1+X} X+Y=2\right) = \frac{98}{3}$		
	3. $P(X^2 = 0 X + Y = 2) = e^{-2} + \frac{9}{25}(1 - e^{-2})$		
	4. $X Y=3 \sim Binomial(3,2)$		
			III .

X तथा Y को क्रमशः 2 एवं 3 प्राचल वाला स्वतंत्र प्वासों याद्दच्छिक चर मानें। निम्न वक्तर्व्यों में से कौन से सही हैं?

1.
$$Var(X|X+Y=2) = \frac{12}{25}$$

2.
$$E\left(\frac{2}{1+X}|X+Y=2\right) = \frac{98}{3}$$

3.
$$P(X^2 = 0|X + Y = 2) = e^{-2} + \frac{9}{25}(1 - e^{-2})$$

4.
$$X|Y = 3 \sim Binomial(3,2)$$

A1 . 1

1

A2 2

2

A3 3

A4 :

Multiple Response

109 704109

Let $\{X_i\colon 1\leq i\leq 2n\}$ be independently and identically distributed normal random variables with mean μ and variance 1, and independent of a standard Cauchy random variable W. Which of the following statistics are consistent for μ ?

$$1. \qquad n^{-1} \sum_{i=1}^n X_i,$$

2.
$$n^{-1} \sum_{i=1}^{2n} X_i$$
,

3.
$$n^{-1} \sum_{i=1}^{n} X_{2i-1}$$

4.
$$n^{-1}(\sum_{i=1}^{n} X_i + W)$$
.

मानें कि $\{X_i\colon 1\leq i\leq 2n\}$ माध्य μ तथा प्रसरण 1 वाले स्वतंत्र एवं सर्वथा समतः बंटित प्रसामान्य याद्दिष्ठक चर हैं, एवं एक मानक कौशी याद्दिष्ठक चर W से स्वतंत्र है। निम्न सांख्यिकी में से कौन से μ के लिए अविरोधी हैं?

$$1. \qquad n^{-1} \sum_{i=1}^n X_i,$$

2.
$$n^{-1} \sum_{i=1}^{2n} X_i$$
,

3.
$$n^{-1} \sum_{i=1}^{n} X_{2i-1}$$
,

4.
$$n^{-1}(\sum_{i=1}^{n} X_i + W)$$
.

A1 : 1

]

A2 2

2

A3 ₃

3

4.75 0.00

A4 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4		
4		
	4.75	0.00
Which of the following statements are true? 1. Maximum likelihood estimator may not be unique. 2. A complete statistic is always sufficient. 3. A sufficient statistic may not be complete. 4. Any function of a sufficient statistic is always sufficient. निम्न वक्तव्यों में से कौन से सत्य हैं?	4.73	0.00
 हो सकता है कि अधिकतम संभाविता आकलक अद्वितीय न हो एक पूर्ण प्रतिदर्शज सदा पर्याप्त है 		
3. हो सकता है कि एक पर्याप्त प्रतिदर्शज पूर्ण न हो		
4. पर्याप्त प्रतिदर्शज का कोई भी फलन सदा पर्याप्त है		
A1 : 1		
1 A2 ₂		
. 2		
•		
A4 4 :		
4		
Let X_1 and X_2 be two independent random variables such that X_1 follows a gamma distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function	4.75	0.00
$f(y) = 0.4f_1(y) + qf_2(y)$.		
Which of the following are true?		
1. $q = 0.6$ 2. $E[Y] = 5.8$ 3. $Var(Y) = 3.04$ 4. $Y = 0.4X_1 + qX_2$		
	 4. Any function of a sufficient statistic is always sufficient. िनम्न वक्तव्यों में से कौन से सत्य हैं? 1. हो सकता है कि अधिकतम संभाविता आकलक अद्वितीय न हो 2. एक पूर्ण प्रतिदर्शन सदा पर्याप्त है 3. हो सकता है कि एक पर्याप्त प्रतिदर्शन पूर्ण न हो 4. पर्याप्त प्रतिदर्शन का कोई भी फलन सदा पर्याप्त है A1 1 A2 2 2 A3 3 3 A4 4 4 4 4 Let X₁ and X₂ be two independent random variables such that X₁ follows a gamma distribution with mean 10 and variance 10, and X₂ ~ N(3,4). Let f₁ and f₂ denote the density functions of X₁ and X₂, respectively. Define a new random variable Y so that for y ∈ ℝ, it has density function f(y) = 0.4f₁(y) + qf₂(y). Which of the following are true? 1. q = 0.6 2. E[Y] = 5.8 3. Var(Y) = 3.04 	 4. Any function of a sufficient statistic is always sufficient. निम्न वक्तव्यों में से कौन से सत्य हैं? 1. हो सकता है कि अधिकतम संभाविता आकलक अदितीय न हो 2. एक पूर्ण प्रतिदर्शज सदा पर्याप्त है 3. हो सकता है कि एक पर्याप्त प्रतिदर्शज पूर्ण न हो 4. पर्याप्त प्रतिदर्शज का कोई भी फलन सदा पर्याप्त है 1. 1 1. 1 1. 2 2 2 2 3. 3 3. 44 4 4. 1 4. 2 5. 2 6. 2 7. 1 7. 2 8. 2 9. 2 10 11 12 12 13 14 15 16 17 18 19 10 10

माने कि X_1 तथा X_2 दो ऐसे स्वतंत्र यादुच्छिक चर हैं कि माध्य 10 तथा प्रसरण 10 के साथ X_1 गामा बंदन का अनुसरण करता है, एवं $X_2 \sim N(3,4)$. माने कि f_1 तथा f_2 से आशय क्रमशः X_1 तथा X_2 के घनत्व फलनों से है। नया यादिच्छिक चर Y इस प्रकार पिरिभाषित करें कि $Y \in \mathbb{R}$ के लिए निम्नलिखित घनत्व फलन हो

$$f(y) = 0.4f_1(y) + qf_2(y).$$

निम्न में कौन से सत्य हैं?

- 1. q = 0.6
- 2. E[Y] = 5.8
- 3. Var(Y) = 3.04
- 4. $Y = 0.4X_1 + qX_2$

A1 1

1

A2 2

:

.

A3 3

3

A4 4

4

Multiple Response

112 704112

Suppose under the null hypothesis H, $X \sim p$, where p(x) = P(X = x) = 1/20, $x \in \{1,2,\dots 20\}$ and under the alternative hypothesis K, $X \sim q$ where $q(x) = P(X = x) = \frac{x}{210}$, $x \in \{1,2,\dots 20\}$. Define two test functions ϕ and ψ for testing H against K such that,

$$\phi(x) = \begin{cases} 1 & \text{if } x \le 2, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\psi(x) = \begin{cases} 1 & \text{if } x \ge 19 \\ 0 & \text{otherwise.} \end{cases}$$

Which of the following statements are true?

- 1. Size of the test ϕ is 0.1.
- 2. Size of the test ψ is 0.05.
- 3. (Power of the test ψ) > 0.05.
- 4. (Power of the test ψ) > (Power of the test ϕ).

4.75 0.00

मानें कि निराकरणीय परिकल्पना H के अन्तर्गत, $X \sim p$ है, जहां p(x) = P(X = x) = 1/20 , $x \in \{1,2,\dots 20\}$ है, तथा वैकल्पिक परिकल्पना K के अन्तर्गत, $X \sim q$ है, जहां $q(x) = P(X = x) = \frac{x}{210}$ $x \in \{1,2,...20\}$ है। H को K के विरूद्ध परीक्षित करने के लिए दो परीक्षण-फलन ϕ एवं ψ इस प्रकार परिभाषित करें कि $\phi(x) = \begin{cases} 1 & \text{if } x \leq 2, \\ 0 & \text{if } x \neq 2. \end{cases}$ तथा $\psi(x) = \begin{cases} 1 & \text{यदि } x \ge 19, \\ 0 & \text{अन्यथा} \end{cases}$ हैं। निम्न वक्तव्यों में से कौन से सत्य हैं? परीक्षण φ का आमाप 0.1 है। परीक्षण ψ का आमाप 0.05 है। (परीक्षण ψ की क्षमता) > 0.05 है। (परीक्षण ψ की क्षमता) > (परीक्षण ϕ की क्षमता) है। A1 ₁

Multiple Response

A4 4

113 704113

Suppose $X_1, X_2, ..., X_n$ are independently and identically distributed $N(0, \tau^{-2})$ random variables, for $\tau^{-2} > 0$. Let the prior distribution on τ^2 have density $\pi(\tau^2) \propto (1/\tau^2)^{\alpha}$ for some $\alpha > 0$. Which of the following are true?

- The prior distribution is an improper distribution for $\alpha > 0$. 1.
- 2. The posterior distribution is a proper distribution for all $\alpha > 0$.
- Under a squared error loss, the generalized Bayes estimator of τ^2 is $\frac{n/2-\alpha}{\sum_{i=1}^n X_i^2/2}$.
- The posterior distribution is proper for $\alpha = 1$.

मार्ने कि $\tau^{-2} > 0$ के लिए $X_1, X_2, ..., X_n$ स्वतंत्र तथा सर्वथासमतः बंटित $N(0, \tau^{-2})$ याद्दिछक चर हैं। मानें कि कुछ $\alpha>0$ के लिए τ^2 पर पूर्व-बंटन के घनत्व $\pi(\tau^2) \propto (1/\tau^2)^{\alpha}$ हैं। निम्न में से कौन से सत्य हैं?

- lpha>0 के लिए पूर्व बंटन अनुचित बंटन है।
- सब $\alpha > 0$ के लिए पश्च बंटन उचित बंटन है।
- वर्गित त्रुटि हानि के लिए au^2 का प्रसामान्यीकृत बेज आकलक $rac{n/2-lpha}{\sum_{i=1}^{n}X_i^2/2}$ है।
- 4. पश्च बंटन $\alpha = 1$ के लिए उचित है।

A1 ₁ A2 2

	2	
	A3 3	
	3	
	A4 4	
	4	
Multiple Response		

0.00

114 704114

Let $(X_1, Y_1), ..., (X_4, Y_4)$ be a random sample from a continuous bivariate distribution function $F_{X,Y}$ with marginal distributions of X and Y being F_X and F_Y respectively. In order to test the null hypothesis H_0 : 'X and Y are independent' against the alternative H_1 : 'X and Y are positively associated', consider the Kendall sample correlation statistic

$$K = \sum_{i=1}^{3} \sum_{j=i+1}^{4} \psi\left((X_{i}, Y_{i}), (X_{j}, Y_{j})\right),$$

where

$$\psi((a,b),(c,d)) = \begin{cases} 1, & \text{if } (d-b)(c-a) > 0, \\ -1, & \text{if } (d-b)(c-a) < 0. \end{cases}$$

Assuming no ties, which of the following are true

- The test that rejects H_0 for $K \ge 4$ has size 1/4.
- The test that rejects H_0 for $K \ge 4$ has size 1/6.
- 3. $P_{H_0}(K=4) = 3/24$.
- 4. $P_{H_0}(K=6) = 1/12$.

मानें कि $(X_1,Y_1),\ldots,(X_4,Y_4)$ संतत द्विचर बंटन फलन $F_{X,Y}$ के यादिन्छक प्रतिदर्श हैं जहां X तथा Y के क्रमश: F_X एवं F_Y सीमांत बंटन हैं। निराकरणीय परिकल्पना H_0 : 'Xतथा Y स्वतंत्र हैं' को विकल्प H_1 : 'X तथा Y घनात्मक रूप से सहचारी हैं' के विरूद परीक्षित करने के लिए केंडाल प्रतिदर्श सहसंबंध प्रतिदर्शज पर विचार करें

$$K = \sum_{i=1}^{3} \sum_{j=i+1}^{4} \psi((X_i, Y_i), (X_j, Y_j)),$$

जहां

$$\psi((a,b),(c,d)) = \begin{cases} 1, & \text{ulf } (d-b)(c-a) > 0, \\ -1, & \text{ulf } (d-b)(c-a) < 0. \end{cases}$$

मानें कि कोई ties नहीं है, तब निम्न में से कौन से सत्य हैं?

- उस परिक्षण का आमाप जो H_0 को $K \ge 4$ पर नकारता है $\frac{1}{4}$ है।
- उस परीक्षण का आमाप जो H_0 को $K \ge 4$ पर नकारता है, 1/6 है।
- $P_{H_0}(K=4)=3/24.$
- 4. $P_{H_0}(K=6) = 1/12$.

A1 ₁ A2 2 A3 ₃

3 A4 4

बह् रैखिक समाश्रयणी निदर्श (model) $Y = X \beta + \epsilon$ पर विचार करें,जहां Y एक $n \times 1$ पर्यवेक्षित दत्त सदिश (data vector) है जिसके लिए n>5 है; X जात नियतांको वाला $n \times 5$ आव्यूह है जिसके लिए rank(X) = 5 है; $\beta = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4)^T$ तथा $\epsilon=(\epsilon_1,...,\epsilon_n)^T$, जहां ϵ_i , i=1,...,n, स्वतंत्रतः बंटित N(0,1) यादच्छिक चर हैं। रैखिक परिकल्पना H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = c$, (एक ज्ञात नियतांक) के विकल्प H_1 : H_0 सत्य नहीं है, पर विचार करें। निम्न वक्तव्यों में से कौन से वक्तव्य सत्य हैं?

- H_0 के अन्तर्गत वर्ग अवशिष्ठों का योग (sum of squares residuals) स्वातंत्र्य कोटि (n-5) के साथ केन्द्रीय χ^2 बंटन का अनुसरण करता है।
- 2. H_0 के अन्तर्गत वर्ग अवशिष्ठों का योग स्वातंत्रय कोटि (n-1) के साथ केन्द्रीय χ^2 बंटन का अनुसरण करता है।
- 3. परीक्षण प्रतिदर्शज स्वातंत्र्य कोटि (5, n-1) के साथ केन्द्रीय F बंटन का अनुसरण करता है।
- 4. परीक्षण प्रतिदर्शज स्वातंत्र्य कोटि (4, n-5) के साथ केन्द्रीय F बंटन का अनुसरण करता है।

A1 ₁

A2 2

2

A3 ₃

3

A4 4

Multiple Response

117 704117

Suppose that $X_1, ..., X_n, X_{n+1}$ is a random sample of size n+1, where p>2 and $\mathbf{n}>p+3$, from a multivariate normal population, $N_p(\mathbf{\mu},\mathbf{\Sigma})$; $\mathbf{\mu}\in\mathcal{R}^p$ and $\mathbf{\Sigma}>0$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $(n-1)S = \sum_{i=1}^n (X_i - \bar{X}_n) (X_i - \bar{X}_n)^T$. Which of the following are correct?

$$1. \qquad (\bar{X}_n - X_{n+1})^T S^{-1} (\bar{X}_n - X_{n+1}) \sim \frac{p(n^2 - 1)}{n(n - p)} \ F_{p, n - p}$$

$$2. \hspace{0.5cm} \textit{E}(\bar{X}_{n}^{T} \; S \; \bar{X}_{n}) = \textit{trace}\left(\frac{\Sigma^{2}}{n}\right) + \mu^{T} \Sigma \mu$$

3.
$$E(S^{-1}) = \frac{n-1}{n-n-2} \Sigma^{-1}$$

4.
$$(\bar{\mathbf{X}}_{n} - \mathbf{X}_{n+1})^{T} \Sigma^{-1} (\bar{\mathbf{X}}_{n} - \mathbf{X}_{n+1}) \sim \frac{n+1}{n} \chi_{p}^{2}$$

मानें कि $X_1,...,X_n,X_{n+1}$ बह्चर प्रसामान्य समष्टि, $N_p(\mu,\Sigma);\ \mu\in\mathcal{R}^p$ तथा $\Sigma>0$ से लिया आमाप $\mathbf{n}+1$ का यादच्छिक प्रतिदर्श है, जहां p>2 तथा $\mathbf{n}>p+3$ हैं। मानें कि $ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i$ तथा $(n-1)S = \sum_{i=1}^n (X_i - ar{X}_n) \, (X_i - ar{X}_n)^T$ हैं। निम्न में से कौन से सही

$$1. \qquad (\bar{X}_n - X_{n+1})^T S^{-1} (\bar{X}_n - X_{n+1}) \sim \frac{p(n^2 - 1)}{n(n - p)} \ F_{p, n - p}$$

2.
$$E(\bar{\mathbf{X}}_n^T \mathbf{S} \bar{\mathbf{X}}_n) = trace\left(\frac{\mathbf{\Sigma}^2}{n}\right) + \boldsymbol{\mu}^T \boldsymbol{\Sigma} \boldsymbol{\mu}$$

3. $E(\mathbf{S}^{-1}) = \frac{n-1}{n-p-2} \boldsymbol{\Sigma}^{-1}$

3.
$$E(S^{-1}) = \frac{n-1}{n-p-2} \Sigma^{-1}$$

4.
$$(\bar{\mathbf{X}}_{n} - \mathbf{X}_{n+1})^{\mathsf{T}} \Sigma^{-1} (\bar{\mathbf{X}}_{n} - \mathbf{X}_{n+1}) \sim \frac{n+1}{n} \chi_{p}^{2}$$

A1 ₁

4.75 0.00

	$\begin{bmatrix} A2 \\ \cdot \end{bmatrix}$ 2		
	A3 3		
	·		
	3		
	A4 4 :		
	4		
Multiple Response			
704118	Let $Y_i = \alpha + \beta x_i + \varepsilon_i$, $i = 1, 2, 3$, where x_i 's are fixed covariates, α and β are unknown parameters and ε_i 's are independently and identically distributed normal random variables with mean 0 and variance $\sigma^2 > 0$. Given the following observations,	4.75	0.00
	$\begin{bmatrix} A2 \\ 2 \end{bmatrix}$		
	A3 3		
	•		
	3		
	A4 4 :		
	4		
Multiple Response		14	0.00
704119		4.75	0.00

A cumulative hazard function H(t) of a non-negative continuous random variable satisfies which of the following conditions?

- 1. $\lim_{t\to\infty}H(t)=\infty.$
- 2. H(0) = 0.
- 3. H(1) = 1.
- 4. H(t) is a nondecreasing function of t.

ऋणेतर संतत याद्दिछक चर का संचयी संकट फलन H(t) निम्न में से कौन सी शर्तें पूरी करता है?

- $1. \qquad \lim_{t\to\infty} H(t) = \infty.$
- 2. H(0) = 0.
- 3. H(1) = 1.
- 4. H(t) है t का फलन, जो ह्रासमान नहीं है।
- A1 1
 - 1
- A2 2
- 2
- A3 3
- 3
- A4 4
- 4

Multiple Response

120 704120

Suppose that cars arrive at a petrol pump following a Poisson distribution at the rate of 10 per hour. The time to perform the refilling is exponentially distributed and the single available staff takes an average of 4 minutes to refill each car. Further assume that the cars leave immediately after refilling. Let α denote the probability of finding 3 or more cars waiting to refill and let β denote the mean number of cars in the queue. Which of the following statements are correct?

0.00

4.75

- 1. $\alpha = \frac{8}{27}$
- 2. $\beta = 1$
- $\beta \alpha = \frac{46}{27}$
- 4. $\alpha\beta=3$

मानें कि किसी पेट्रोल पंप पर कारें प्वासों बंटन का अनुसरण करते हुए 10 प्रति घंटा की दर से आती हैं। (पेट्रोल) भरने में लगने वाला समय चर घातांकी रूप में बंदित है तथा उपलब्ध अकेला कर्मचारी हर कार को भरने में औसतन 4 मिनट लेता है। यह भी मानें कि भर जाने पर कारें तत्काल चली जाती हैं। मानें कि 3 या 3 से अधिक कारों के प्रतीक्षारत होने की प्रायिकता α तथा पंक्ति में लगी कारों की माध्य संख्या β है। निम्न वक्तव्यों में से कौन से सत्य हैं?

1.
$$\alpha = \frac{8}{27}$$

2.
$$\beta = 1$$

$$\beta - \alpha = \frac{46}{27}$$

4.
$$\alpha\beta = 3$$

A1 ₁

A2 $_2$

2

A3

 $^{A4}_{4}$

4