## Class 12 Chemistry

## NCERT Solutions for Chapter 2 - Solutions

## Intext Questions

2.1. Calculate the mass percentage of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and carbon tetrachloride ( $\mathrm{CCl}_{4}$ ) if $\mathbf{2 2 \mathrm { g }}$ of benzene is dissolved in $\mathbf{1 2 2 \mathrm { g }}$ of carbon tetrachloride.

Ans: Mass of solution $=$ Mass of $\mathrm{C}_{6} \mathrm{H}_{6}+$ Mass of $\mathrm{CCl}_{4}$
$=22 \mathrm{~g}+122 \mathrm{~g}=144 \mathrm{~g}$
Mass \% of benzene $=22 / 144 \times 100=15.28 \%$
Mass $\%$ of $\mathrm{CCl}_{4}=122 / 144 \times 100=84.72 \%$
2.2. Calculate the mole fraction of benzene in solution containing $\mathbf{3 0 \%}$ by mass in carbon tetrachloride.
Ans: $30 \%$ by mass of $\mathrm{C}_{6} \mathrm{H}_{6}$ in $\mathrm{CCl}_{4}=>30 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}$ in 100 g solution
$\therefore$ no. of moles of $\mathrm{C}_{6} \mathrm{H}_{6,},\left({ }^{( } \mathrm{C}_{6} \mathrm{~h}_{6}\right)=30 / 78=0.385$
(molar mass of $\mathrm{C}_{6} \mathrm{H}_{6}=78 \mathrm{~g}$ )
no. of moles of

$$
\mathrm{CCl}_{4}\left(\mathrm{n}_{\mathrm{CCl}_{4}}\right)=\frac{70}{154}=0.455
$$

. $x_{\mathrm{C}_{6} \mathrm{H}_{6}}=\frac{\mathrm{n}_{\mathrm{C}_{6} \mathrm{H}_{6}}}{\mathrm{n}_{\mathrm{C}_{6} \mathrm{H}_{6}}+\mathrm{n}_{\mathrm{CCl}_{4}}}$
$=\frac{0.385}{0.385+0.455}=\frac{0.385}{0.84}=0.458$
$x_{\mathrm{CCl}_{4}}=1-0.458=0.542$
2.3. Calculate the molarity of each of the following solutions
(a) 30 g of $\mathrm{Co}\left(\mathrm{NO}_{3}\right) 26 \mathrm{H}_{2} \mathrm{O}$ in 4.3 L of solution
(b) $\mathbf{3 0 ~ m L}$ of $0-5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ diluted to 500 mL .

## Ans:

(a) Molarity of solution $=\frac{\text { Mass of solute } / \text { Molar mass of solute }}{\text { Volume of solution in litres }}$

Mass of solute, $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=30 \mathrm{~g}$.
Molar mass of solute, $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=59+2 \times 14+6 \times 16+6 \times 18=291 \mathrm{~g} \mathrm{~mol}^{-1}$.
Volume of solution $=4.3 \mathrm{~L}$

$$
\text { Molarity }(M)=\frac{(30 \mathrm{~g}) /\left(291 \mathrm{~g} \mathrm{~mol}^{-1}\right)}{(4.3 \mathrm{~L})}=0.024 \mathrm{~mol} \mathrm{~L}^{-1}=0.024 \mathrm{M}
$$

(b) Volume of undiluted $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $\left(\mathrm{V}_{1}\right)=30 \mathrm{~mL}$

Molarity of undiluted $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $\left(\mathrm{M}_{1}\right)=0.5 \mathrm{M}$
Volume of diluted $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $\left(\mathrm{V}_{2}\right)=500 \mathrm{~mL}$
Molarity of diluted $\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{M}_{2}\right)$ can be calculated as :
or

$$
\begin{aligned}
M_{1} V_{1} & =M_{2} V_{2} \\
M_{2} & =\frac{M_{1} V_{1}}{V_{2}}=\frac{(30 \mathrm{~mL}) \times(0.5 \mathrm{M})}{(500 \mathrm{~mL})}=0.03 \mathrm{M}
\end{aligned}
$$

### 2.4. Calculate the mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ required in making 2.5 kg of 0.25 molal aqueous solution.

Ans: 0.25 Molal aqueous solution to urea means that
moles of urea $=0.25$ mole
mass of solvent $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=60 \mathrm{~g} \mathrm{~mol}^{-1}$
.. 0.25 mole of urea $=0.25 \times 60=15 \mathrm{~g}$
Mass of solution $=1000+15=1015 \mathrm{~g}=1.015 \mathrm{~kg}$
1.015 kg of urea solution contains 15 g of urea
$\therefore 2.5 \mathrm{~kg}$ of solution contains urea $=15 / 1.015 \times 2.5=37 \mathrm{~g}$

### 2.5. Calculate

(a) molality
(b) molarity and
(c) mole fraction of KI if the density of $\mathbf{2 0 \%}$ (mass/mass) aqueous KI solution is $1.202 \mathrm{~g} \mathrm{~mL}^{-1}$.

## Ans:

## Step I. Calculation of molality of solution

Weight of KI in 100 g of the solution $=20 \mathrm{~g}$
Weight of water in the solution $=100-20=80 \mathrm{~g}=0-08 \mathrm{~kg}$
Molar mass of $\mathrm{KI}=39+127=166 \mathrm{~g} \mathrm{~mol}^{-1}$.

$$
\text { Molality of solution } \begin{aligned}
&(m)=\frac{\text { No of gram moles of KI }}{\text { Mass of water in kg }}=\frac{(20 \mathrm{~g}) /\left(166 \mathrm{~g} \mathrm{~mol}^{-1}\right)}{(0.08 \mathrm{~kg})} \\
&=1.506 \mathrm{~mol} \mathrm{~kg} \\
&-1.506 \mathrm{~m} .
\end{aligned}
$$

## Step II. Calculation of molarity of solution

$$
\begin{aligned}
\text { Weight of solution } & =100 \mathrm{~g} ; \text { Density of solution }=1.202 \mathrm{~g} \mathrm{~mL}^{-1} . \\
\text { Volume of solution } & =\frac{\text { Weight of solution }}{\text { Density }}=\frac{(100 \mathrm{~g})}{\left(1 \cdot 202 \mathrm{~g} \mathrm{~mL}^{-1}\right)}=83 \cdot 19 \mathrm{~mL} \\
\text { Molarity of solution }(\mathrm{M}) & =\frac{\text { No. of gram moles of } \mathrm{KI}}{\text { Volume of solution in litres }}=\frac{(20 \mathrm{~g}) /\left(166 \mathrm{~g} \mathrm{~mol}^{-1}\right)}{(0.083 \mathrm{~L})} \\
& =1.45 \mathrm{~mol} \mathrm{~L}^{-1}=\mathbf{1 . 4 5 ~ M}
\end{aligned}
$$

Step III. Calculation of mole fraction of KI

$$
\begin{aligned}
n_{\mathrm{KI}} & =\frac{\text { Mass of KI }}{\text { Molar mass of KI }}=\frac{(20 \mathrm{~g})}{\left(166 \mathrm{~g} \mathrm{~mol}^{-1}\right)}=0.12 \mathrm{~mol} \\
n_{\mathrm{H}_{2} \mathrm{O}} & =\frac{\text { Mass of water }}{\text { Molar mass of water }}=\frac{(80 \mathrm{~g})}{\left(18 \mathrm{~g} \mathrm{~mol}^{-1}\right)}=4.44 \mathrm{~mol} . \\
x_{\mathrm{KI}} & =\frac{n_{\mathrm{KI}}}{n_{\mathrm{KI}}+n_{\mathrm{H}_{2} \mathrm{O}}}=\frac{(0 \cdot 12 \mathrm{~mol})}{(0 \cdot 12+4.44) \mathrm{mol}}=\frac{0.12}{4.56}=0.0263 .
\end{aligned}
$$

2.6. $\mathrm{H}_{2} \mathrm{~S}$, a toxic gas with rotten egg like smell, is used for the qualitative analysis. If the solubility of $\mathrm{H}_{2} \mathrm{~S}$ in water at STP is $\mathbf{0 . 1 9 5} \mathbf{~ m}$, calculate Henry's law constant.

Ans: Solubility of $\mathrm{H}_{2} \mathrm{~S}$ gas $=0.195 \mathrm{~m}$
$=0.195$ mole in 1 kg of solvent
1 kg of solvent $=1000 \mathrm{~g}$

$$
=\frac{1000}{18}=55.55 \mathrm{moles}
$$

$\therefore x_{\mathrm{H}_{2} \mathrm{~S}}=\frac{0.195}{0.195+55.55}$

$$
=\frac{0.195}{55.745}=0.0035
$$

- Pressure at STP $=0.987$ bar

Applying Henry's law,

$$
\begin{aligned}
& P_{\mathrm{H}_{2} \mathrm{~S}}=K_{\mathrm{H}} \times x_{\mathrm{H}_{2} \mathrm{~S}} \\
\Rightarrow \quad & K_{\mathrm{H}}=\frac{P_{\mathrm{H}_{2} \mathrm{~S}}}{x_{\mathrm{H}_{2} \mathrm{~S}}}=\frac{0.987}{0.0035}=282 \mathrm{bar}
\end{aligned}
$$

2.7. Henry's law constant for $\mathrm{CO}_{2}$ in water is $1.67 \times 10^{8} \mathrm{~Pa}$ at 298 K . Calculate the quantity of $\mathrm{CO}_{2}$ in 500 mL of soda water when packed under 2.5 atm $\mathrm{CO}_{2}$ pressure at 298 K .

## Ans.:

$$
\begin{aligned}
K_{\mathrm{H}} & =1.67 \times 10^{8} \mathrm{~Pa} \\
P_{\mathrm{CO}_{2}} & =2.5 \mathrm{~atm}=2.5 \times 101325 \mathrm{~Pa} \\
\therefore x_{\mathrm{CO}_{2}} & =\frac{P_{\mathrm{CO}_{2}}}{K_{\mathrm{H}}}=\frac{2.5 \times 101325}{1.67 \times 10^{8}}=1.517 \times 10^{-3}
\end{aligned}
$$

For 500 mL of soda water, water present $\simeq 500 \mathrm{~mL}$

$$
\begin{aligned}
& =500 \mathrm{~g}=\frac{500}{18}=27.78 \text { moles } \\
\therefore \quad n_{\mathrm{H}_{2} \mathrm{O}} & =27.78 \text { moles } \\
\therefore \quad \frac{n_{\mathrm{CO}_{2}}}{27.78} & =1.517 \times 10^{-3} \\
, \quad n_{\mathrm{CO}_{2}} & =42.14 \times 10^{-3} \mathrm{~mole} \\
& =42.14 \mathrm{mmol} \\
& =42.14 \times 10^{-3} \times 44 \mathrm{~g} \\
& =1.854 \mathrm{~g}
\end{aligned}
$$

2.8 The vapour pressures of pure liquids $A$ and $B$ are 450 mm and 700 mm of Hg respectively at 350 K . Calculate the composition of the liquid mixture if total vapour pressure is $\mathbf{6 0 0} \mathbf{~ m m}$ of $\mathbf{H g}$. Also find the composition in the vapour phase.
Ans:
Vapour pressure of pure liquid $A(P \circ A)=450 \mathrm{~mm}$
Vapour pressure of pure liquid $B(P \circ B)=700 \mathrm{~mm}$
Total vapour pressure of the solution $(P)=600 \mathrm{~mm}$
According to Raoult's Law, $\mathrm{P}=\mathrm{P}_{\mathrm{A}}^{0} x_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{0} x_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}^{0} x_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{0}\left(1-x_{\mathrm{A}}\right)$
$(600 \mathrm{~mm})=450 \mathrm{~mm} \times x_{\mathrm{A}}+700 \mathrm{~mm}\left(1-x_{\mathrm{A}}\right)$ $=700 \mathrm{~mm}+x_{\mathrm{A}}(450-700) \mathrm{mm}$ $=700-x_{\mathrm{A}}(250 \mathrm{~mm})$
or

$$
x_{\mathrm{A}}=\frac{(600-700) \mathrm{mm}}{-(250 \mathrm{~mm})}=0.40
$$

Mole fraction of $\mathrm{A}\left(x_{\mathrm{A}}\right)=0.40$
Mole fraction of $\mathrm{B}\left(x_{\mathrm{B}}\right)=1-0.40=0.60$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}^{\circ} x_{\mathrm{A}}=(450 \mathrm{~mm}) \times 0.40=180 \mathrm{~mm} \\
& \mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{B}}^{\circ} x_{\mathrm{B}}=(700 \mathrm{~mm}) \times 0.60=420 \mathrm{~mm}
\end{aligned}
$$

Mole fraction of A in the vapour phase $=\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}}=\frac{(180 \mathrm{~mm})}{(180+420) \mathrm{mm}}=\mathbf{0 . 3 0}$
Mole fraction of $B$ in the vapour phase $=\frac{P_{B}}{P_{A}+P_{B}}=\frac{(420 \mathrm{~mm})}{(180+420) \mathrm{mm}}=\mathbf{0 . 7 0}$
2.9. Vapour pressure of pure water at 298 K is 23.8 m m Hg .50 g of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering.
Ans:

$$
\begin{aligned}
& P^{0}=23.8 \mathrm{~mm} \\
& w_{2}=50 \mathrm{~g}, M_{2} \text { (urea) }=60 \mathrm{~g} \mathrm{~mol}^{-1} \\
& w_{1}=850 \mathrm{~g}, M_{1} \text { (water) }=18 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

To find: $P_{\mathrm{s}}$ and $\left(P^{0}-P_{\mathrm{s}}\right) / P^{0}$
Solution: Applying Raoult's law,

$$
\begin{aligned}
& \frac{P^{0}-P_{s}}{P^{0}}=\frac{n_{2}}{n_{1}+n_{2}}
\end{aligned}=\frac{w_{2} / M_{2}}{w_{1} / M_{1}+w_{2} / M_{2}}, \begin{aligned}
\therefore \quad \frac{P^{0}-P_{\mathrm{s}}}{P^{0}} & =\frac{50 / 60}{850 / 18+50 / 60} \\
& =\frac{0.83}{47.22+0.83}=0.017
\end{aligned}
$$

Putting $P^{0}=23.8 \mathrm{~mm}$, we have

$$
\begin{aligned}
& \frac{23.8-P_{\mathrm{s}}}{P_{\mathrm{s}}}=0.017 \\
& \Rightarrow \quad 23.8-P_{\mathrm{s}}=0.017 P_{\mathrm{s}} \\
& \text { or, } \quad 1.017 P_{\mathrm{s}}=23.8 \\
& \text { or, } \quad \boldsymbol{P}_{\mathrm{s}}=\mathbf{2 3 . 4} \mathbf{~ m m}
\end{aligned}
$$

2.10. Boiling point of water at 750 mm Hg is $99.63^{\circ} \mathrm{C}$. How much sucrose is to be added to 500 g of water such that it boils at $100^{\circ} \mathrm{C}$.
Ans:
Given $\quad \Delta T_{\mathrm{b}}=100-96.63=3.37^{\circ}$
Mass of water, $w_{1}=500 \mathrm{~g}$
Molar mass of water, $M_{1}=18 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar mass of sucrose, $M_{2}=342 \mathrm{~g} \mathrm{~mol}^{-1}$
To find: Mass of sucrose, $\mathrm{w}_{2}=$ ?
Solution: We know, $\Delta T_{b}=K_{b} \times m$

$$
\begin{aligned}
& \quad=K_{b} \times \frac{w_{2}}{M_{2}} \times \frac{1000}{w_{1}} \\
& \Rightarrow w_{2}=\frac{M_{2} \times w_{1} \times \Delta T_{b}}{1000 \times K_{b}}=\frac{342 \times 500 \times 3.37}{1000 \times 0.52} \\
& w_{2}=1108.2 \mathrm{~g} \\
& \therefore \text { Mass of solute, } w_{2}=1.11 \mathrm{~kg}
\end{aligned}
$$

2.11 Calculate the mass of ascorbic acid (vitamin $\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$ ) to be dissolved in 75 g of acetic acid to lower its melting point by $1.5^{\circ} \mathrm{C}$. $\left(\mathrm{K}_{\mathrm{f}}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}\right)=3.9 \mathrm{~K}$
$\mathrm{kg} \mathrm{mol}^{-1}$ )
Ans:

$$
\mathrm{W}_{\mathrm{B}}=\frac{\mathrm{M}_{\mathrm{B}} \times \Delta \mathrm{T}_{f} \times \mathrm{W}_{\mathrm{A}}}{\mathrm{~K}_{f}}
$$

Mass of acetic acid $\left(\mathrm{W}_{\mathrm{A}}\right)=75 \mathrm{~g}=0.075 \mathrm{~kg}$.
Depression in freeing point $\left(\Delta \mathrm{T}_{f}\right)=1.5^{\circ} \mathrm{C}=1.5 \mathrm{~K}$
Molar mass of ascorbic acid $\left(\mathrm{M}_{\mathrm{B}}\right)=6 \times 12+8 \times 1+6 \times 16=176 \mathrm{~g} \mathrm{~mol}^{-1}$
Molal depression constant $\left(\mathrm{K}_{f}\right)=3.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$

$$
\mathrm{W}_{\mathrm{B}}=\frac{\left(176 \mathrm{~g} \mathrm{~mol}^{-1}\right) \times(1.5 \mathrm{~K}) \times(0.075 \mathrm{~kg})}{\left(3.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)}=\mathbf{5 . 0 8} \mathbf{g}
$$

2.12. Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass $185,000 \mathrm{in} 450 \mathrm{~mL}$ of water at $37^{\circ} \mathrm{C}$.
Ans:
Given: $\quad V=450 \mathrm{~mL}=0.45 \mathrm{~L}$

$$
T=37^{\circ} \mathrm{C}=310 \mathrm{~K}
$$

$$
R=8.314 \mathrm{kPa} \mathrm{LK}^{-1} \mathrm{~mol}^{-1}
$$

To find:

$$
\pi=?
$$

Solution: Applying the formula,

$$
\begin{aligned}
\pi & =C R T=\frac{n}{V} R T \\
n & =\frac{1.0 \mathrm{~g}}{185,000 \mathrm{~g} \mathrm{~mol}^{-1}} \\
\therefore P=\frac{1}{185,000} & \times \frac{1}{0.45} \times 8.314 \\
& \times 10^{3} \mathrm{PaLK}^{-1} \mathrm{~mol}^{-1} \times 310 \mathrm{~K} \\
& =30.96 \mathrm{~Pa}
\end{aligned}
$$

