Class 12 Chemistry

NCERT Solutions for Chapter 3 – Electrochemistry Intext Questions

3.1. How would you determine the standard electrode potential of the system Mg²⁺¹ Mg?

Ans: A cell will be set up consisting of Mg/MgSO₄ (1 M) as one electrode and standard hydrogen electrode Pt, H, (1 atm)H⁺/(I M) as second electrode, measure the EMF of the cell and also note the direction of deflection in the voltmeter. The direction of deflection shows that e⁻¹ s flow from mg electrode to hydrogen electrode, i.e., oxidation takes place on magnesium electrode and reduction on hydrogen electrode. Hence, the cell may be represented as follows :

 $Mg | Mg^{2+}(1 M) || H^{+}(1 M) || H_{2}$, (1 atm), Pt

$$E^{o}_{cell} = E^{o}_{H^{+}/\frac{1}{2}H_{2}} - E^{o}_{Mg^{2+}/Mg}$$

Put

 $E^{o}_{Mg^{2+}/Mg} = -E^{o}_{cell}$

 $E^{0}_{H^{+}/\frac{1}{2}H_{2}}$

3.2. Can you store copper sulphate solutions in a zinc pot?

Ans: Zn being more reactive than Cu, displaces Cu from CuSO₄ solution as follows:Zn (s) + CuSO₄ (aq) -> ZnSO₄(ag)+Cu (s)

In terms of EMF, we have

 $Zn | Zn^{2+} || Cu^{2+} | Cu$ $E^{o}_{cell} = E^{o}_{Cu^{2+}/Cu} - E^{o}_{Zn^{2+}/Zn}$ = 0.34 V - (-0.76 V) = 1.10 V

As E_{cell}^{o} is positive, reaction takes place, i.e., Zn reacts with copper and hence, we cannot store CuSO₄ solution in zinc pot.

3.3. Consult the table on standard electrode potentials and suggest three substances that can oxidise Fe2+ ions under suitable conditions.

Ans. The oxidation of Fe2+ ions to Fe3+ ions proceeds as follows :

 $Fe^{2+} \rightarrow {}^{3+} + e^-$; $E \circ OX = -0.77 V$

Only those substances can oxidise Fe²⁺ ions to Fe³⁺ ions which can accept

electrons released during oxidation or are placed above iron in electrochemical series. These are : $Cl_2(g)$, $Br_2(g)$ and Cr_2O2-7 ions (in the acidic medium).

3.4. Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.

Ans. For hydrogen electrode, $H^+ + e^- \rightarrow 1/2 H_2$,

Applying Nernst equation,

3.5. Calculate the emf of the cell in which the following reaction takes place: $Ni(s)+2Ag^+$ (0.002 M) -> Ni^{2+} (0.160 M)+2Ag(s) Given that $E^{(-)}_{(cell)} = 1.05 V$. Ans:

Applying Nernst equation,

$$E_{cell} = E_{cell}^{0} - \frac{0.0591}{n} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}}$$

= 1.05V - $\frac{0.0591}{2} \log \frac{0.160}{(0.002)^{2}}$
= 1.05 - $\frac{0.0591}{2} \log(4 \times 10^{4})$
= 1.05 - $\frac{0.0591}{2} (4.6021)$
= 1.05 - 0.14 V
= 0.91 V

3.6. The cell in which the following reaction occurs: $2Fe^{3+}(aq) + 2I^{-}(aq) \longrightarrow 2Fe^{2+}(aq) + I^{2}(s)$ has $E^{\circ}_{cell}=0.236$ V at 298 K. Calculate the standard Gibbs energy and the equilibrium constant of the cell reaction.

Ans:

 $2 \operatorname{Fe}^{3+} (aq) + 2\operatorname{I^{-}} (aq) \rightarrow 2 \operatorname{Fe}^{2+} (aq) + \operatorname{I}_{2} (s)$ For the given cell, n = 2 $\Delta_{r} G^{\circ} = -nF E^{\circ}_{cell}$ $= -2 \times 96500 \times 0.236$ $= -45.55 \text{ kJ mol}^{-1}$ Also, $\Delta_{r} G^{\circ} = -2.303 RT \log K_{C}$ $\Rightarrow \log K_{C} = \frac{-\Delta_{r} G^{\circ}}{2.303 \operatorname{RT}}$ $= \frac{-45.55}{2.303 \times 8.314 \times 10^{-3} \times 298}$ = 7.983 $\Rightarrow K_{C} = \operatorname{antilog} (7.983)$ $= 9.616 \times 10^{7}$

3.7. Why does the conductivity of a solution decrease with dilution?

Ans: The conductivity of a solution is linked with the number of ions present per unit volume. With dilution, these decrease and the corresponding conductivity or specific conductance of the solution decreases.

3.8. Suggest a way to determine the value of water. Ans:

By using Kohlrausch's law, Λ^{o}_{m} for H₂O can be calculated, we can write,

 $\Lambda^{o}_{m} = \Lambda^{o}_{m}$ (HCl) + Λ^{o}_{m} (NaOH) – Λ^{o}_{m} (NaCl) Being strong electrolytes, Λ^{o}_{m} values of HCl, NaOH and NaCl are known. By substituting their values, we can obtain Λ^{o}_{m} for H₂O.

3.9. The molar conductivity of 0.025 mol L⁻¹ methanoic acid is 46.1 S cm² mol⁻¹. Calculate its degree of dissociation and dissociation constant Given $\lambda^{\circ}(H^{+})=349.6$ S cm² mol⁻¹ and $\lambda^{\circ}(HCOO-)=54.6$ S cm² mol⁻¹

Ans:

. .

$$\Lambda_{m}^{o}(\text{HCOOH}) = \lambda^{o}(\text{H}^{+}) + \lambda^{o}(\text{HCOO}^{-})$$

= 349.6 + 54.6
= 404.2 S cm² mol⁻¹
$$\Lambda_{m}^{C} = 46.1 \text{ S cm}^{2} \text{ mol}^{-1}$$

$$\alpha = \frac{\Lambda_{m}^{C}}{\Lambda_{m}^{o}} = \frac{46.1}{404.2} = 0.114$$

HCOOH \implies HCOO⁻ + H⁺
Initial conc. c 0 0
at equi, c(1-\alpha) c\alpha c\alpha
$$\therefore K_{a} = \frac{c\alpha.c\alpha}{c(1-\alpha)} = \frac{c\alpha^{2}}{1-\alpha}$$

$$= \frac{0.025 \times (0.114)^{2}}{1-0.114} = 3.67 \times 10^{-4}$$

3.10. If a current of 0.5 ampere flows through a metallic wire for 2 hours, then how many electrons would flow through the wire? Ans:

We know, Q = It $= 0.5 \times (2 \times 60 \times 60)$ = 3600 C1F $\Rightarrow 96500 \text{ C} \Rightarrow 1 \text{ mole of } e^{-1} \text{ s}$ $\Rightarrow 6.02 \times 10^{23} \text{ e}^{-1} \text{ s}$ $\therefore 3600 \text{ C}$ is equivalent to the flow of $e^{-1} \text{ s}$

$$= \frac{6.02 \times 10^{23}}{96500} \times 3600$$
$$= 2.246 \times 10^{22} \,\mathrm{e}^{-1} \,\mathrm{s}$$

3.11. Suggest a list of metals which can be extracted electrolytically.

Ans: The highly reactive metals having large -ve E° values, which can themselves act as powerful reducing agents can be extracted electrolytically. The process is known as electrolytic reduction. For details, consult Unit-6. For example, sodium, potassium, calcium, magnesium etc.

3.12. Consider the reaction: $Cr_2O_7^{2-}+14H^++6e_- \rightarrow 2Cr_3++7H_2O$ What is the quantity of electricity in coulombs needed to reduce 1 mol of $Cr_2O_7^{2-}$?

Ans:

From the reaction, 1 mol of $Cr_2O_7^{2-}$ require 6F = $6 \times 96500 = 579000 \text{ C}$ $\therefore 579000 \text{ C}$ of electricity are required for reduction of $Cr_2O_7^{2-}$ to Cr^{3+}

3.13. Write the chemistry of recharging the lead storage battery, highlighting all the materials that are involved during recharging.

Ans: A lead storage battery consists of anode of lead, cathode of a grid of lead packed with lead dioxide (PbO₂) and 38% H₂SO₄ solution as electrolyte. When the battery is in use, the reaction taking place are:

Anode:
$$Pb(s) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2e^-$$

Cathode: $PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^-$
 $\rightarrow PbSO_4(s) + 2H_2O(l)$

Overall Reaction :
$$Pb(s) + PbO_2(s) + 2H_2SO_4(aq)$$

 $\rightarrow 2PbSO_4(s) + 2H_2O(l)$

On charging the battery, the reverse reaction takes place, i.e., PbSO₄ deposited on electrodes is converted back to Pb and PbO₂ and H₂SO₄ is regenerated.

3.14. Suggest two materials other than hydrogen that can be used as fuels in the fuel cells.

Ans: Methane (CH₄) and methanol (CH₃OH) can also be used as fuels in place of hydrogen in the fuel cells.

3.15. Explain how rusting of iron is envisaged as setting up of an electrochemical cell.

Ans: The water present on the surface of iron dissolves acidic oxides of air like CO_2 , SO_2 , etc. to form acids which dissociate to give H⁺ ions :

 $H_2O + CO_2 \rightarrow H_2CO_3 \rightleftharpoons 2H^+ + CO_3^{2-}$ In the presence of H⁺, iron looses e⁻¹s to form Fe³⁺. Hence, this spot acts as anode:

Fe (s) \rightarrow Fe²⁺ (aq) + 2e⁻ The e⁻¹s released move through the metal to reach another spot where H⁺ ions and dissolved oxygen take up these e⁻¹ s and reduction occurs. This spot, thus, acts as cathode :

 $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$ The overall reaction is : 2Fe(s)+O_2(g)+4H^+(aq) → 2Fe^{2+}(aq)+2H_2O(l) Thus, an electrochemical cell is set up on the surface.

Ferrous ions are further oxidised by atmospheric oxygen to ferric ions which combine with water to form hydrated ferric oxide, Fe₂O₃. xH₂O, which is rust.