Class 12 Chemistry

NCERT Solutions for Chapter 4 - Chemical Kinetics Intext Questions

1. For the reaction $R \rightarrow P R \rightarrow P$, the concentration of a reactant changes from 0.03 M to 0.02 M in $\mathbf{2 5}$ minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.

Ans: The average rate of the reaction can be calculated by dividing the change in the rate of decreasing the rate of reactant by the time taken. This is given below:

Average rate $=-\Delta[R] \Delta$ tAverage rate $=-\Delta[R] \Delta t$
This can be written as:
Average rate $=-[R] 2-[R]$ 1t2-t1Average rate $=-[R] 2-[R] 1$ t2-t1
R1 $=0.03 \mathrm{MR1}=0.03 \mathrm{M}$
$R 2=0.02 \mathrm{MR2}=0.02 \mathrm{M}$
$\mathrm{t} 2-\mathrm{t} 1=25 \mathrm{mint} 2-\mathrm{t} 1=25 \mathrm{~min}$
Putting the values, we get:
Average rate $=-0.02-0.0325$ Average rate $=-0.02-0.0325$
Average rate $=-0.0125=4 \times 10-4 \mathrm{M} \mathrm{min}-1$ Average rate $=$ $-0.0125=4 \times 10-4 \mathrm{M} \mathrm{min}-1$

So, the average rate in minutes will be $4 \times 10-4 \mathrm{M}$ min $-14 \times 10-4 \mathrm{M}$ min -1
Now, to find the average rate in seconds we have to divide the above answer by 60 . So, the answer will be:

Average rate $=-4 \times 10-460=6.66 \times 10-6 \mathrm{M} \mathrm{s}-1$ Average rate $=$ $-4 \times 10-460=6.66 \times 10-6 \mathrm{M} \mathrm{s}-1$

Therefore, the average rate in seconds will be
$6.66 \times 10-6 \mathrm{M} \mathrm{s}-16.66 \times 10-6 \mathrm{M} \mathrm{s}-1$
2. In a reaction, $2 \mathrm{~A} \rightarrow \rightarrow$ Products, the concentration of A decreases from 0.5 mol L-10.5 mol L-1 to $0.4 \mathrm{~mol} \mathrm{~L}-10.4 \mathrm{~mol} \mathrm{L-1}$ in 10 minutes. Calculate the rate during this interval.

Ans: The average rate of the reaction can be calculated by dividing the change in the rate of decreasing the rate of reactant by the time taken. This is given below:

Average rate $=-12 \Delta[\mathrm{~A}] \Delta$ tAverage rate $=-12 \Delta[\mathrm{~A}] \Delta \mathrm{t}$
This is due the fact that the reaction given is:

2A $\rightarrow \rightarrow$ Products

So, the average rate will be written as:
Average rate $=-12[\mathrm{~A}] 2-[\mathrm{A}]$ 1t2-t1Average rate $=-12[\mathrm{~A}] 2-[\mathrm{A}] 1 \mathrm{t} 2-\mathrm{t} 1$
$\mathrm{A} 1=0.5 \mathrm{MA} 1=0.5 \mathrm{M}$
$\mathrm{A} 2=0.4 \mathrm{MA} 2=0.4 \mathrm{M}$
$\mathrm{t} 2-\mathrm{t} 1=10 \operatorname{mint} 2-\mathrm{t} 1=10 \mathrm{~min}$
Putting the values, we get:
Average rate $=-12 \times 0.4-0.510$ Average rate $=-12 \times 0.4-0.510$

Average rate $=-12 \times-0.110=5 \times 10-3 \mathrm{M}$ min-1Average rate $=$ $-12 \times-0.110=5 \times 10-3 \mathrm{M} \mathrm{min}-1$

So, the average rate will be $5 \times 10-3 \mathrm{M}$ min $-15 \times 10-3 \mathrm{M}$ min-1
3. For a reaction, $A+B \rightarrow$ Product $A+B \rightarrow$ Product, the rate law is given by: $r=$ $k[A] 1 / 2[B] 2 r=k[A] 1 / 2[B] 2$. What is the order of the reaction?

Ans: The order of the reaction can be calculated by adding the stoichiometry coefficients of the reactants in the given rate of the reaction.

Given the rate is $r=k[A] 1 / 2[B] 2 r=k[A] 1 / 2[B] 2$
So, the order will be:
Order $=2+12=2.5$ Order $=2+12=2.5$

So, the order of the reaction is 2.5 .
4. The conversion of the molecules X to Y follows second order kinetics. If concentration of x is increased to three times how will it affect the rate of formation of Y ?

Ans: The reaction will be:
$X \rightarrow Y X \rightarrow Y$
As the question says that this reaction follows the second order reaction, we can write the rate law equation as:

Rate $=\mathrm{k}[\mathrm{X}] 2=$ ka2Rate $=\mathrm{k}[\mathrm{X}] 2=\mathrm{ka} 2$
If $\mathrm{X} \geqslant=\mathrm{amol} / \mathrm{L}$
It is said that the concentration of X increases by three times, so we can write:
X P $=3 \mathrm{amol} / \mathrm{L}$
Therefore, the rate of reaction will be:
Rate $=k(3 a) 2=9$ ka2Rate $=k(3 a) 2=9 \mathrm{ka} 2$
Thus, the rate of the reaction will increase by 9 times or the rate formation will increase by 9 times.
5. A first order reaction has a rate constant $1.15 \times 10-3 \mathrm{~s}-11.15 \times 10-3 \mathrm{~s}-1$. How long will 5 g reactant take to reduce to $\mathbf{3 g}$?

Ans: The initial amount of the reactant is given as 5 g . We can write:
$[R] 0=5 g[R] 0=5 g$
The final amount of the reactant is given as 3 g . We can write:
R R $=3 \mathrm{~g}$
We are also given the value of rate constant as:
Rate constant $=1.15 \times 10-3 \mathrm{~s}$-1Rate constant $=1.15 \times 10-3 \mathrm{~s}-1$
We know that the reaction is a $1^{\text {st }}$ order reaction, the time can be calculated by:
$t=2.303 \mathrm{k} \log [\mathrm{R}] 0[\mathrm{R}] \mathrm{t}=2.303 \mathrm{k} \log [\mathrm{R}] 0[\mathrm{R}]$

Putting the values in the above formula, we get:
$t=2.3031 .15 \times 10-3 \log 53 t=2.3031 .15 \times 10-3 \log 53$
$\mathrm{t}=2.3031 .15 \times 10-3 \times 0.2219 \mathrm{t}=2.3031 .15 \times 10-3 \times 0.2219$
$t=444$ seconds
So, the time taken will be 444 seconds.
6. Time required to decompose SO 2 Cl 2 SO 2 Cl 2 to half its initial amount is $\mathbf{6 0}$ minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

Ans: We are given that the decomposition of SO 2 Cl 2 SO 2 Cl 2 is a first order reaction. So, we can write:
$\mathrm{t} 1 / 2=0.693 \mathrm{kt} 1 / 2=0.693 \mathrm{k}$
It is mentioned that the time required for the initial amount to become half is 60 minutes.
$\mathrm{t} 1 / 2=60 \mathrm{mint} 1 / 2=60 \mathrm{~min}$
Therefore, $\mathrm{k}=0.693 \mathrm{t} 1 / 2 \mathrm{k}=0.693 \mathrm{t} 1 / 2$
Putting the value, we get:
$\mathrm{k}=0.69360 \times 60=1.925 \times 10-4 \mathrm{~s}-1 \mathrm{k}=0.69360 \times 60=1.925 \times 10-4 \mathrm{~s}-1$
Thus, the rate constant is $1.925 \times 10-4 \mathrm{~s}-11.925 \times 10-4 \mathrm{~s}-1$.

7. What will be the effect of temperature on rate constant?

Ans: An increase of 10 degrees in temperature causes a reaction's rate constant to almost double in size. In any case, the Arrhenius equation gives the exact temperature dependency of a chemical reaction rate.

The Arrhenius equation is given below:
$\mathrm{k}=\mathrm{Ae} \mathrm{e}-\mathrm{Ea} / \mathrm{Rtk}=\mathrm{Ae} \mathrm{e}-\mathrm{Ea} / \mathrm{Rt}$
Where, A is the Arrhenius factor or the frequency factor,
T is the temperature,
R is the gas constant,
EaEa is the activation energy.
8. The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate EaEa.

Ans: The formula that can be used to solve the question is:
logk1k2 = Ea2.303R[T2-T1T1T2]logk1k2 = Ea2.303R[T2-T1T1T2]
T1T1 temperature given is absolute temperature and it is equal to 298 K .
$\mathrm{T} 2 \mathrm{~T} 2=298+10=308 \mathrm{~K}$
It is given that the rate of the chemical reaction double for an increase of 10 K , therefore, we can write the values of rate constant as:
$\mathrm{k} 1=\mathrm{xk} 1=\mathrm{x}$
$\mathrm{k} 2=2 \mathrm{xk} 2=2 \mathrm{x}$
Also, $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}-1 \mathrm{~mol}-1 \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}-1 \mathrm{~mol}-1$
Now, putting all the values in the formula, we get:
$\log 2 x x=E a 2.303 \times 8.314[10298 \times 308] \log 2 x x=E a 2.303 \times 8.314[10298 \times 308]$
$\log 2=\mathrm{Ea} 2.303 \times 8.314[10298 \times 308] \log 2=\mathrm{Ea} 2.303 \times 8.314[10298 \times 308]$
$\mathrm{Ea}=2.303 \times 8.314 \times 298 \times 308 \times \log 210 \mathrm{Ea}=2.303 \times 8.314 \times 298 \times 308 \times \log$ 210
$\mathrm{Ea}=52897.78 \mathrm{~J}$ mol-1Ea $=52897.78 \mathrm{~J} \mathrm{~mol}-1$
$\mathrm{Ea}=52.89 \mathrm{~kJ}$ mol-1Ea $=52.89 \mathrm{~kJ}$ mol-1

9. The activation energy for the reaction

$2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H} 2(\mathrm{~g})+\mathrm{l} 2(\mathrm{~g}) 2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H} 2(\mathrm{~g})+\mathrm{l} 2(\mathrm{~g})$ is 209.5 kJ mol-1209.5 kJ mol-1 at 581
K. Calculate the fraction of molecules of molecules having energy equal to or greater than activation energy.

Ans: We are given the activation energy as 209.5 kJ mol-1209.5 kJ mol-1 $\mathrm{T}=581 \mathrm{~K}$
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}-1 \mathrm{~mol}-1 \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}-1 \mathrm{~mol}-1$
Now, the fraction of molecules of reactants having energy equal to or greater than activation energy is given as:
$\mathrm{x}=\mathrm{eEa} / \mathrm{RT} \mathrm{x}=\mathrm{eEa} / \mathrm{RT}$
$\ln \mathrm{x}=-\mathrm{EaRT} \ln \mathrm{x}=-\mathrm{EaRT}$
$\log x=-E a 2.303$ RTIog $x=-E a 2.303 R T$
$\log x=2095002.303 \times 8.314 \times 581=18.8323 \log x$
$=2095002.303 \times 8.314 \times 581=18.8323$
Now, taking the antilog:
$x=$ Antilog (18.8323)
$x=1.471 \times 10-19 x=1.471 \times 10-19$

